60 research outputs found

    Satisfiability of General Intruder Constraints with and without a Set Constructor

    Get PDF
    Many decision problems on security protocols can be reduced to solving so-called intruder constraints in Dolev Yao model. Most constraint solving procedures for protocol security rely on two properties of constraint systems called monotonicity and variable origination. In this work we relax these restrictions by giving a decision procedure for solving general intruder constraints (that do not have these properties) that stays in NP. Our result extends a first work by L. Mazar\'e in several directions: we allow non-atomic keys, and an associative, commutative and idempotent symbol (for modeling sets). We also discuss several new applications of the results.Comment: Submitted to the Special issue of Information and Computation on Security and Rewriting Techniques (SecReT), 2011. 59 page

    Modeling and Analysis of Advanced Cryptographic Primitives and Security Protocols in Maude-NPA

    Full text link
    Tesis por compendio[ES] La herramienta criptográfica Maude-NPA es un verificador de modelos especializado para protocolos de seguridad criptográficos que tienen en cuenta las propiedades algebraicas de un sistema criptográfico. En la literatura, las propiedades criptográficas adicionales han descubierto debilidades de los protocolos de seguridad y, en otros casos, son parte de los supuestos de seguridad del protocolo para funcionar correctamente. Maude-NPA tiene una base teórica en la rewriting logic, la unificación ecuacional y el narrowing para realizar una búsqueda hacia atrás desde un patrón de estado inseguro para determinar si es alcanzable o no. Maude-NPA se puede utilizar para razonar sobre una amplia gama de propiedades criptográficas, incluida la cancelación del cifrado y descifrado, la exponenciación de Diffie-Hellman, el exclusive-or y algunas aproximaciones del cifrado homomórfico. En esta tesis consideramos nuevas propiedades criptográficas, ya sea como parte de protocolos de seguridad o para descubrir nuevos ataques. También hemos modelado diferentes familias de protocolos de seguridad, incluidos los Distance Bounding Protocols or Multi-party key agreement protocolos. Y hemos desarrollado nuevas técnicas de modelado para reducir el coste del análisis en protocolos con tiempo y espacio. Esta tesis contribuye de varias maneras al área de análisis de protocolos criptográficos y muchas de las contribuciones de esta tesis pueden ser útiles para otras herramientas de análisis criptográfico.[CAT] L'eina criptografica Maude-NPA es un verificador de models especialitzats per a protocols de seguretat criptogràfics que tenen en compte les propietats algebraiques d'un sistema criptogràfic. A la literatura, les propietats criptogràfiques addicionals han descobert debilitats dels protocols de seguretat i, en altres casos, formen part dels supòsits de seguretat del protocol per funcionar correctament. Maude-NPA te' una base teòrica a la rewriting lògic, la unificació' equacional i narrowing per realitzar una cerca cap enrere des d'un patró' d'estat insegur per determinar si es accessible o no. Maude-NPA es pot utilitzar per raonar sobre una amplia gamma de propietats criptogràfiques, inclosa la cancel·lació' del xifratge i desxifrat, l'exponenciacio' de Diffie-Hellman, el exclusive-or i algunes aproximacions del xifratge homomòrfic. En aquesta tesi, considerem noves propietats criptogràfiques, ja sigui com a part de protocols de seguretat o per descobrir nous atacs. Tambe' hem modelat diferents famílies de protocols de seguretat, inclosos els Distance Bounding Protocols o Multi-party key agreement protocols. I hem desenvolupat noves tècniques de modelització' de protocols per reduir el cost de l'analisi en protocols amb temps i espai. Aquesta tesi contribueix de diverses maneres a l’àrea de l’anàlisi de protocols criptogràfics i moltes de les contribucions d’aquesta tesi poden ser útils per a altres eines d’anàlisi criptogràfic.[EN] The Maude-NPA crypto tool is a specialized model checker for cryptographic security protocols that take into account the algebraic properties of the cryptosystem. In the literature, additional crypto properties have uncovered weaknesses of security protocols and, in other cases, they are part of the protocol security assumptions in order to function properly. Maude-NPA has a theoretical basis on rewriting logic, equational unification, and narrowing to perform a backwards search from an insecure state pattern to determine whether or not it is reachable. Maude-NPA can be used to reason about a wide range of cryptographic properties, including cancellation of encryption and decryption, Diffie-Hellman exponentiation, exclusive-or, and some approximations of homomorphic encryption. In this thesis, we consider new cryptographic properties, either as part of security protocols or to discover new attacks. We have also modeled different families of security protocols, including Distance Bounding Protocols or Multi-party key agreement protocols. And we have developed new protocol modeling techniques to reduce the time and space analysis effort. This thesis contributes in several ways to the area of cryptographic protocol analysis and many of the contributions of this thesis can be useful for other crypto analysis tools.This thesis would not have been possible without the funding of a set of research projects. The main contributions and derivative works of this thesis have been made in the context of the following projects: - Ministry of Economy and Business of Spain : Project LoBaSS Effective Solutions Based on Logic, Scientific Research under award number TIN2015-69175-C4-1-R, this project was focused on using powerful logic-based technologies to analyze safety-critical systems. - Air Force Office of Scientific Research of United States of America : Project Advanced symbolic methods for the cryptographic protocol analyzer Maude-NPA Scientific Research under award number FA9550-17-1-0286 - State Investigation Agency of Spain : Project FREETech: Formal Reasoning for Enabling and Emerging Technologies Scientific I+D-i Research under award number RTI2018-094403-B-C32Aparicio Sánchez, D. (2022). Modeling and Analysis of Advanced Cryptographic Primitives and Security Protocols in Maude-NPA [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/190915Compendi

    Automating Security Analysis: Symbolic Equivalence of Constraint Systems

    Get PDF
    We consider security properties of cryptographic protocols, that are either trace properties (such as confidentiality or authenticity) or equivalence properties (such as anonymity or strong secrecy). Infinite sets of possible traces are symbolically represented using deducibility constraints. We give a new algorithm that decides the trace equivalence for the traces that are represented using such constraints, in the case of signatures, symmetric and asymmetric encryptions. Our algorithm is implemented and performs well on typical benchmarks. This is the first implemented algorithm, deciding symbolic trace equivalence

    Intruder deducibility constraints with negation. Decidability and application to secured service compositions

    Get PDF
    The problem of finding a mediator to compose secured services has been reduced in our former work to the problem of solving deducibility constraints similar to those employed for cryptographic protocol analysis. We extend in this paper the mediator synthesis procedure by a construction for expressing that some data is not accessible to the mediator. Then we give a decision procedure for verifying that a mediator satisfying this non-disclosure policy can be effectively synthesized. This procedure has been implemented in CL-AtSe, our protocol analysis tool. The procedure extends constraint solving for cryptographic protocol analysis in a significative way as it is able to handle negative deducibility constraints without restriction. In particular it applies to all subterm convergent theories and therefore covers several interesting theories in formal security analysis including encryption, hashing, signature and pairing.Comment: (2012

    Diffie-Hellman without Difficulty (Extended Version)

    Get PDF

    Toward an Automatic Analysis of Web Service Security

    Get PDF
    Web services send and receive messages in XML syntax with some parts hashed, encrypted or signed, according to the WS-Security standard. In this paper we introduce a model to formally describe the protocols that underly these services, their security properties and the rewriting attacks they might be subject to. Unlike with usual security protocols, we have to address here the facts that: (1) The Web service receive/send actions are nondeterministic to accommodate the XML format and the lack of normalization in parsing XML messages. Our model is designed to permit non-deterministic operations. (2) The Web service message format is better modelled with multiset constructors than with fixed arity symbols. Hence we had to introduce an attacker model that handles associativecommutative operators. In particular we present a decision procedure for insecurity of Web services with messages built using encryption, signature, and other cryptographic primitives

    Strand Spaces with Choice via a Process Algebra Semantics

    Get PDF
    Roles in cryptographic protocols do not always have a linear execution, but may include choice points causing the protocol to continue along different paths. In this paper we address the problem of representing choice in the strand space model of cryptographic protocols, particularly as it is used in the Maude-NPA cryptographic protocol analysis tool. To achieve this goal, we develop and give formal semantics to a process algebra for cryptographic protocols that supports a rich taxonomy of choice primitives for composing strand spaces. In our taxonomy, deterministic and non-deterministic choices are broken down further. Non-deterministic choice can be either explicit, i.e., one of two paths is chosen, or implicit, i.e. the value of a variable is chosen non-deterministically. Likewise, deterministic choice can be either an (explicit) if-then-else choice, i.e. one path is chosen if a predicate is satisfied, while the other is chosen if it is not, or implicit deterministic choice, i.e. execution continues only if a certain pattern is matched. We have identified a class of choices which includes finite branching and some cases of infinite branching, which we address in this paper. Our main theoretical results are two bisimulation results: one proving that the formal semantics of our process algebra is bisimilar to the forwards execution semantics of its associated strands, and another showing that it is also bisimilar with respect to the symbolic backwards semantics of the strands such as that supported by Maude-NPA. At the practical level, we present a prototype implementation of our process algebra in Maude-NPA, illustrate its expressive power and naturalness with various examples, and show how it can be effectively used in formal analysis.Partially supported by NSF grant CNS-131910Partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN 2015-69175-C4-1-R and TIN 2013-45732-C4-1-PParitally supported by Generalitat Valenciana under grant PROME- TEOII/2015/013.Ope

    Towards a Constrained-based Verification of Parameterized Cryptographic Protocols

    Get PDF
    International audienceAlthough many works have been dedicated to standard protocols like Needham-Schroeder very few address the more challenging class of group protocol s. We present a synchronous model for group protocols, that generalizes standard protocol models by permitting unbounded lists inside messages. In this extended model we propose a correct and complete set of inference rules for checking security properties in presence of an active intruder for the class of well-tagged protocols. Our inference system generalizes the ones that are implemented in several tools for a bounded number of sessions and fixed size lists in message. In particular when applied to protocols whose specification does not contain unbounded lists our inference system provides a decision procedure for secrecy in the case of a fixed number of sessions

    Well Structured Transition Systems with History

    Get PDF
    We propose a formal model of concurrent systems in which the history of a computation is explicitly represented as a collection of events that provide a view of a sequence of configurations. In our model events generated by transitions become part of the system configurations leading to operational semantics with historical data. This model allows us to formalize what is usually done in symbolic verification algorithms. Indeed, search algorithms often use meta-information, e.g., names of fired transitions, selected processes, etc., to reconstruct (error) traces from symbolic state exploration. The other interesting point of the proposed model is related to a possible new application of the theory of well-structured transition systems (wsts). In our setting wsts theory can be applied to formally extend the class of properties that can be verified using coverability to take into consideration (ordered and unordered) historical data. This can be done by using different types of representation of collections of events and by combining them with wsts by using closure properties of well-quasi orderings.Comment: In Proceedings GandALF 2015, arXiv:1509.0685
    • …
    corecore