1,739 research outputs found

    Type-elimination-based reasoning for the description logic SHIQbs using decision diagrams and disjunctive datalog

    Get PDF
    We propose a novel, type-elimination-based method for reasoning in the description logic SHIQbs including DL-safe rules. To this end, we first establish a knowledge compilation method converting the terminological part of an ALCIb knowledge base into an ordered binary decision diagram (OBDD) which represents a canonical model. This OBDD can in turn be transformed into disjunctive Datalog and merged with the assertional part of the knowledge base in order to perform combined reasoning. In order to leverage our technique for full SHIQbs, we provide a stepwise reduction from SHIQbs to ALCIb that preserves satisfiability and entailment of positive and negative ground facts. The proposed technique is shown to be worst case optimal w.r.t. combined and data complexity and easily admits extensions with ground conjunctive queries.Comment: 38 pages, 3 figures, camera ready version of paper accepted for publication in Logical Methods in Computer Scienc

    On Algorithms and Complexity for Sets with Cardinality Constraints

    Get PDF
    Typestate systems ensure many desirable properties of imperative programs, including initialization of object fields and correct use of stateful library interfaces. Abstract sets with cardinality constraints naturally generalize typestate properties: relationships between the typestates of objects can be expressed as subset and disjointness relations on sets, and elements of sets can be represented as sets of cardinality one. Motivated by these applications, this paper presents new algorithms and new complexity results for constraints on sets and their cardinalities. We study several classes of constraints and demonstrate a trade-off between their expressive power and their complexity. Our first result concerns a quantifier-free fragment of Boolean Algebra with Presburger Arithmetic. We give a nondeterministic polynomial-time algorithm for reducing the satisfiability of sets with symbolic cardinalities to constraints on constant cardinalities, and give a polynomial-space algorithm for the resulting problem. In a quest for more efficient fragments, we identify several subclasses of sets with cardinality constraints whose satisfiability is NP-hard. Finally, we identify a class of constraints that has polynomial-time satisfiability and entailment problems and can serve as a foundation for efficient program analysis.Comment: 20 pages. 12 figure

    Analyzing Consistency of Behavioral REST Web Service Interfaces

    Full text link
    REST web services can offer complex operations that do more than just simply creating, retrieving, updating and deleting information from a database. We have proposed an approach to design the interfaces of behavioral REST web services by defining a resource and a behavioral model using UML. In this paper we discuss the consistency between the resource and behavioral models that represent service states using state invariants. The state invariants are defined as predicates over resources and describe what are the valid state configurations of a behavioral model. If a state invariant is unsatisfiable then there is no valid state configuration containing the state and there is no service that can implement the service interface. We also show how we can use reasoning tools to determine the consistency between these design models.Comment: In Proceedings WWV 2012, arXiv:1210.578

    The Complexity of Reasoning with FODD and GFODD

    Full text link
    Recent work introduced Generalized First Order Decision Diagrams (GFODD) as a knowledge representation that is useful in mechanizing decision theoretic planning in relational domains. GFODDs generalize function-free first order logic and include numerical values and numerical generalizations of existential and universal quantification. Previous work presented heuristic inference algorithms for GFODDs and implemented these heuristics in systems for decision theoretic planning. In this paper, we study the complexity of the computational problems addressed by such implementations. In particular, we study the evaluation problem, the satisfiability problem, and the equivalence problem for GFODDs under the assumption that the size of the intended model is given with the problem, a restriction that guarantees decidability. Our results provide a complete characterization placing these problems within the polynomial hierarchy. The same characterization applies to the corresponding restriction of problems in first order logic, giving an interesting new avenue for efficient inference when the number of objects is bounded. Our results show that for Σk\Sigma_k formulas, and for corresponding GFODDs, evaluation and satisfiability are Σkp\Sigma_k^p complete, and equivalence is Πk+1p\Pi_{k+1}^p complete. For Πk\Pi_k formulas evaluation is Πkp\Pi_k^p complete, satisfiability is one level higher and is Σk+1p\Sigma_{k+1}^p complete, and equivalence is Πk+1p\Pi_{k+1}^p complete.Comment: A short version of this paper appears in AAAI 2014. Version 2 includes a reorganization and some expanded proof

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    A Novel SAT-Based Approach to the Task Graph Cost-Optimal Scheduling Problem

    Get PDF
    The Task Graph Cost-Optimal Scheduling Problem consists in scheduling a certain number of interdependent tasks onto a set of heterogeneous processors (characterized by idle and running rates per time unit), minimizing the cost of the entire process. This paper provides a novel formulation for this scheduling puzzle, in which an optimal solution is computed through a sequence of Binate Covering Problems, hinged within a Bounded Model Checking paradigm. In this approach, each covering instance, providing a min-cost trace for a given schedule depth, can be solved with several strategies, resorting to Minimum-Cost Satisfiability solvers or Pseudo-Boolean Optimization tools. Unfortunately, all direct resolution methods show very low efficiency and scalability. As a consequence, we introduce a specialized method to solve the same sequence of problems, based on a traditional all-solution SAT solver. This approach follows the "circuit cofactoring" strategy, as it exploits a powerful technique to capture a large set of solutions for any new SAT counter-example. The overall method is completed with a branch-and-bound heuristic which evaluates lower and upper bounds of the schedule length, to reduce the state space that has to be visited. Our results show that the proposed strategy significantly improves the blind binate covering schema, and it outperforms general purpose state-of-the-art tool

    Verifying UML/OCL operation contracts

    Get PDF
    In current model-driven development approaches, software models are the primary artifacts of the development process. Therefore, assessment of their correctness is a key issue to ensure the quality of the final application. Research on model consistency has focused mostly on the models' static aspects. Instead, this paper addresses the verification of their dynamic aspects, expressed as a set of operations defined by means of pre/postcondition contracts. This paper presents an automatic method based on Constraint Programming to verify UML models extended with OCL constraints and operation contracts. In our approach, both static and dynamic aspects are translated into a Constraint Satisfaction Problem. Then, compliance of the operations with respect to several correctness properties such as operation executability or determinism are formally verified

    Simplification of UML/OCL schemas for efficient reasoning

    Get PDF
    Ensuring the correctness of a conceptual schema is an essential task in order to avoid the propagation of errors during software development. The kind of reasoning required to perform such task is known to be exponential for UML class diagrams alone and even harder when considering OCL constraints. Motivated by this issue, we propose an innovative method aimed at removing constraints and other UML elements of the schema to obtain a simplified one that preserve the same reasoning outcomes. In this way, we can reason about the correctness of the initial artifact by reasoning on a simplified version of it. Thus, the efficiency of the reasoning process is significantly improved. In addition, since our method is independent from the reasoning engine used, any reasoning method may benefit from it.Peer ReviewedPostprint (author's final draft
    corecore