10 research outputs found

    CYBERSECURITY FOR INTELLECTUAL PROPERTY: DEVELOPING PRACTICAL FINGERPRINTING TECHNIQUES FOR INTEGRATED CIRCUITRY

    Get PDF
    The system on a chip (SoC) paradigm for computing has become more prevalent in modern society. Because of this, reuse of different functional integrated circuits (ICs), with standardized inputs and outputs, make designing SoC systems easier. As a result, the theft of intellectual property for different ICs has become a highly profitable business. One method of theft-prevention is to add a signature, or fingerprint, to ICs so that they may be tracked after they are sold. The contribution of this dissertation is the creation and simulation of three new fingerprinting methods that can be implemented automatically during the design process. In addition, because manufacturing and design costs are significant, three of the fingerprinting methods presented, attempt to alleviate costs by determining the fingerprint in the post-silicon stage of the VLSI design cycle. Our first two approaches to fingerprint ICs, are to use Observability Don’t Cares (ODCs) and Satisfiability Don’t Cares (SDCs), which are almost always present in ICs, to hide our fingerprint. ODCs cause an IC to ignore certain internal signals, which we can utilize to create fingerprints that have a minimal performance overhead. Using a heuristic approach, we are also able to choose the overhead the gate will have by removing some fingerprint locations. The experiments show that this work is effective and can provide a large number of fingerprints for more substantial circuits, with a minimal overhead. SDCs are similar to ODCs except that they focus on input patterns, to gates, that cannot exist. For this work, we found a way to quickly locate most of the SDCs in a circuit and depending on the input patterns that we know will not occur, replace the gates to create a fingerprint with a minimal overhead. We also created two methods to implement this SDC fingerprinting method, each with their own advantages and disadvantages. Both the ODC and SDC fingerprinting methods can be implemented in the circuit design or physical design of the IC, and finalized in the post-silicon phase, thus reducing the cost of manufacturing several different circuits. The third method developed for this dissertation was based on our previous work on finite state machine (FSM) protection to generate a fingerprint. We show that we can edit ICs with incomplete FSMs by adding additional transitions from the set of don’t care transitions. Although the best candidates for this method are those with unused states and transitions, additional states can be added to the circuit to generate additional don’t care transitions and states, useful for generating more fingerprints. This method has the potential for an astronomical number of fingerprints, but the generated fingerprints need to be filtered for designs that have an acceptable design overhead in comparison to the original circuit. Our fourth and final method for IC fingerprinting utilizes scan-chains which help to monitor the internal state of a sequential circuit. By modifying the interconnects between flip flops in a scan chain we can create unique fingerprints that are easy to detect by the user. These modifications are done after the design for test and during the fabrication stage, which helps reduce redesign overhead. These changes can also be finalized in the post-silicon stage, similar to the work for the ODC and SDC fingerprinting, to minimize manufacturing costs. The hope with this dissertation is to demonstrate that these methods for generating fingerprints, for ICs, will improve upon the current state of the art. First, these methods will create a significant number of unique fingerprints. Second, they will create fingerprints that have an acceptable overhead and are easy to detect by the developer and are harder to detect or remove by the adversary. Finally, we show that three of the methods will reduce the cost of manufacturing by being able to be implemented in the later stages of their design cycle

    Security through Obscurity: Layout Obfuscation of Digital Integrated Circuits using Don't Care Conditions

    Get PDF
    Contemporary integrated circuits are designed and manufactured in a globalized environment leading to concerns of piracy, overproduction and counterfeiting. One class of techniques to combat these threats is circuit obfuscation which seeks to modify the gate-level (or structural) description of a circuit without affecting its functionality in order to increase the complexity and cost of reverse engineering. Most of the existing circuit obfuscation methods are based on the insertion of additional logic (called “key gates”) or camouflaging existing gates in order to make it difficult for a malicious user to get the complete layout information without extensive computations to determine key-gate values. However, when the netlist or the circuit layout, although camouflaged, is available to the attacker, he/she can use advanced logic analysis and circuit simulation tools and Boolean SAT solvers to reveal the unknown gate-level information without exhaustively trying all the input vectors, thus bringing down the complexity of reverse engineering. To counter this problem, some ‘provably secure’ logic encryption algorithms that emphasize methodical selection of camouflaged gates have been proposed previously in literature [1,2,3]. The contribution of this paper is the creation and simulation of a new layout obfuscation method that uses don't care conditions. We also present proof-of-concept of a new functional or logic obfuscation technique that not only conceals, but modifies the circuit functionality in addition to the gate-level description, and can be implemented automatically during the design process. Our layout obfuscation technique utilizes don’t care conditions (namely, Observability and Satisfiability Don’t Cares) inherent in the circuit to camouflage selected gates and modify sub-circuit functionality while meeting the overall circuit specification. Here, camouflaging or obfuscating a gate means replacing the candidate gate by a 4X1 Multiplexer which can be configured to perform all possible 2-input/ 1-output functions as proposed by Bao et al. [4]. It is important to emphasize that our approach not only obfuscates but alters sub-circuit level functionality in an attempt to make IP piracy difficult. The choice of gates to obfuscate determines the effort required to reverse engineer or brute force the design. As such, we propose a method of camouflaged gate selection based on the intersection of output logic cones. By choosing these candidate gates methodically, the complexity of reverse engineering can be made exponential, thus making it computationally very expensive to determine the true circuit functionality. We propose several heuristic algorithms to maximize the RE complexity based on don’t care based obfuscation and methodical gate selection. Thus, the goal of protecting the design IP from malicious end-users is achieved. It also makes it significantly harder for rogue elements in the supply chain to use, copy or replicate the same design with a different logic. We analyze the reverse engineering complexity by applying our obfuscation algorithm on ISCAS-85 benchmarks. Our experimental results indicate that significant reverse engineering complexity can be achieved at minimal design overhead (average area overhead for the proposed layout obfuscation methods is 5.51% and average delay overhead is about 7.732%). We discuss the strengths and limitations of our approach and suggest directions that may lead to improved logic encryption algorithms in the future. References: [1] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009. [2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated Circuits,” in 2008 Design, Automation and Test in Europe, 2008, pp. 1069–1074. [3] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis of Integrated Circuit Camouflaging,” ACM Conference on Computer Communications and Security, 2013. [4] Bao Liu, Wang, B., "Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks,"Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014 , vol., no., pp.1,6, 24-28 March 2014

    PERFORMANCE ANALYSIS OF WATERMARKING APPROACH FOR VLSI DESIGN INTELLECTUAL PROPERTY PROTECTION

    Get PDF
    VLSI technology brought revolution in EDA industry. Fabrication of complicated system on a chip is possible by using reusable module called Intellectual Property (IP) core. IP cores that became an integral part of the electronic design industry influenced and had a rather significant and almost incomparable impact with respect to system designing in any chip. IP designs for any organization are imperative; contrary, IP designs that are shared can significantly cause high security risks. The majority of IP’s require time as well as effort for purposes of designing and verification, however there still remains the possibility of these being copied or minor modifications to hide proof of ownership. To overcome this problem watermarking technique is recommended for IP Core protection. Watermark insertion in multilevel increases the security of the system. In this paper the ownership information is inserted in state transition outputs of State Transition Graph employing hierarchical representation of Finite state Machine (FSM) and subsequently in the netlist level by embedding watermark in the delay between the states. Watermark insertion at two levels increases the security of the design. Signature generation uses cryptographic algorithm for enhancing the security of the IP core designs. The experimental results show that performance is improved

    Studies related to the process of program development

    Get PDF
    The submitted work consists of a collection of publications arising from research carried out at Rhodes University (1970-1980) and at Heriot-Watt University (1980-1992). The theme of this research is the process of program development, i.e. the process of creating a computer program to solve some particular problem. The papers presented cover a number of different topics which relate to this process, viz. (a) Programming methodology programming. (b) Properties of programming languages. aspects of structured. (c) Formal specification of programming languages. (d) Compiler techniques. (e) Declarative programming languages. (f) Program development aids. (g) Automatic program generation. (h) Databases. (i) Algorithms and applications

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    University of Maine Undergraduate Catalog, 2022-2023

    Get PDF
    The University of Maine undergraduate catalog for the 2022-2023 academic year includes an introduction, the academic calendars, general information about the university, and sections on attending, facilities and centers, and colleges and academic programs including the Colleges of Business, Public Policy and Health, Education and Development, Engineering, Liberal Arts and Sciences, and Natural Sciences, Forestry and Agriculture

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore