45 research outputs found

    Recognition and Exploitation of Gate Structure in SAT Solving

    Get PDF
    In der theoretischen Informatik ist das SAT-Problem der archetypische Vertreter der Klasse der NP-vollstĂ€ndigen Probleme, weshalb effizientes SAT-Solving im Allgemeinen als unmöglich angesehen wird. Dennoch erzielt man in der Praxis oft erstaunliche Resultate, wo einige Anwendungen Probleme mit Millionen von Variablen erzeugen, die von neueren SAT-Solvern in angemessener Zeit gelöst werden können. Der Erfolg von SAT-Solving in der Praxis ist auf aktuelle Implementierungen des Conflict Driven Clause-Learning (CDCL) Algorithmus zurĂŒckzufĂŒhren, dessen LeistungsfĂ€higkeit weitgehend von den verwendeten Heuristiken abhĂ€ngt, welche implizit die Struktur der in der industriellen Praxis erzeugten Instanzen ausnutzen. In dieser Arbeit stellen wir einen neuen generischen Algorithmus zur effizienten Erkennung der Gate-Struktur in CNF-Encodings von SAT Instanzen vor, und außerdem drei AnsĂ€tze, in denen wir diese Struktur explizit ausnutzen. Unsere BeitrĂ€ge umfassen auch die Implementierung dieser AnsĂ€tze in unserem SAT-Solver Candy und die Entwicklung eines Werkzeugs fĂŒr die verteilte Verwaltung von Benchmark-Instanzen und deren Attribute, der Global Benchmark Database (GBD)

    Rank Lower Bounds in Propositional Proof Systems Based on Integer Linear Programming Methods

    Get PDF
    The work of this thesis is in the area of proof complexity, an area which looks to uncover the limitations of proof systems. In this thesis we investigate the rank complexity of tautologies for several of the most important proof systems based on integer linear programming methods. The three main contributions of this thesis are as follows: Firstly we develop the ïŹrst rank lower bounds for the proof system based on the Sherali-Adams operator and show that both the Pigeonhole and Least Number Principles require linear rank in this system. We also demonstrate a link between the complexity measures of Sherali-Adams rank and Resolution width. Secondly we present a novel method for deriving rank lower bounds in the well-studied Cutting Planes proof system. We use this technique to show that the Cutting Plane rank of the Pigeonhole Principle is logarithmic. Finally we separate the complexity measures of Resolution width and Sherali-Adams rank from the complexity measures of Lovasz and Schrijver rank and Cutting Planes rank

    Stabbing Planes

    Get PDF
    We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by branching on an inequality and its "integer negation." That is, we can (nondeterministically choose) a hyperplane a x >= b with integer coefficients, which partitions the polytope into three pieces: the points in the polytope satisfying a x >= b, the points satisfying a x <= b-1, and the middle slab b-1 < a x < b. Since the middle slab contains no integer points it can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each path terminates when the current polytope is empty, which is polynomial-time checkable. Among our results, we show somewhat surprisingly that Stabbing Planes can efficiently simulate Cutting Planes, and moreover, is strictly stronger than Cutting Planes under a reasonable conjecture. We prove linear lower bounds on the rank of Stabbing Planes refutations, by adapting a lifting argument in communication complexity

    Preprocessing and Stochastic Local Search in Maximum Satisfiability

    Get PDF
    Problems which ask to compute an optimal solution to its instances are called optimization problems. The maximum satisfiability (MaxSAT) problem is a well-studied combinatorial optimization problem with many applications in domains such as cancer therapy design, electronic markets, hardware debugging and routing. Many problems, including the aforementioned ones, can be encoded in MaxSAT. Thus MaxSAT serves as a general optimization paradigm and therefore advances in MaxSAT algorithms translate to advances in solving other problems. In this thesis, we analyze the effects of MaxSAT preprocessing, the process of reformulating the input instance prior to solving, on the perceived costs of solutions during search. We show that after preprocessing most MaxSAT solvers may misinterpret the costs of non-optimal solutions. Many MaxSAT algorithms use the found non-optimal solutions in guiding the search for solutions and so the misinterpretation of costs may misguide the search. Towards remedying this issue, we introduce and study the concept of locally minimal solutions. We show that for some of the central preprocessing techniques for MaxSAT, the perceived cost of a locally minimal solution to a preprocessed instance equals the cost of the corresponding reconstructed solution to the original instance. We develop a stochastic local search algorithm for MaxSAT, called LMS-SLS, that is prepended with a preprocessor and that searches over locally minimal solutions. We implement LMS-SLS and analyze the performance of its different components, particularly the effects of preprocessing and computing locally minimal solutions, and also compare LMS-SLS with the state-of-the-art SLS solver SATLike for MaxSAT.

    The Complexity of Some Geometric Proof Systems

    Get PDF
    In this Thesis we investigate proof systems based on Integer Linear Programming. These methods inspect the solution space of an unsatisfiable propositional formula and prove that this space contains no integral points. We begin by proving some size and depth lower bounds for a recent proof system, Stabbing Planes, and along the way introduce some novel methods for doing so. We then turn to the complexity of propositional contradictions generated uniformly from first order sentences, in Stabbing Planes and Sum-Of-Squares. We finish by investigating the complexity-theoretic impact of the choice of method of generating these propositional contradictions in Sherali-Adams

    On the Power and Limitations of Branch and Cut

    Get PDF
    The Stabbing Planes proof system [Paul Beame et al., 2018] was introduced to model the reasoning carried out in practical mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting Planes and to refute the Tseitin formulas - certain unsatisfiable systems of linear equations od 2 - which are canonical hard examples for many algebraic proof systems. In a recent (and surprising) result, Dadush and Tiwari [Daniel Dadush and Samarth Tiwari, 2020] showed that these short refutations of the Tseitin formulas could be translated into quasi-polynomial size and depth Cutting Planes proofs, refuting a long-standing conjecture. This translation raises several interesting questions. First, whether all Stabbing Planes proofs can be efficiently simulated by Cutting Planes. This would allow for the substantial analysis done on the Cutting Planes system to be lifted to practical mixed integer programming solvers. Second, whether the quasi-polynomial depth of these proofs is inherent to Cutting Planes. In this paper we make progress towards answering both of these questions. First, we show that any Stabbing Planes proof with bounded coefficients (SP*) can be translated into Cutting Planes. As a consequence of the known lower bounds for Cutting Planes, this establishes the first exponential lower bounds on SP*. Using this translation, we extend the result of Dadush and Tiwari to show that Cutting Planes has short refutations of any unsatisfiable system of linear equations over a finite field. Like the Cutting Planes proofs of Dadush and Tiwari, our refutations also incur a quasi-polynomial blow-up in depth, and we conjecture that this is inherent. As a step towards this conjecture, we develop a new geometric technique for proving lower bounds on the depth of Cutting Planes proofs. This allows us to establish the first lower bounds on the depth of Semantic Cutting Planes proofs of the Tseitin formulas

    Efficient local search for Pseudo Boolean Optimization

    Get PDF
    Algorithms and the Foundations of Software technolog

    Bounded-depth Frege complexity of Tseitin formulas for all graphs

    Get PDF
    We prove that there is a constant K such that Tseitin formulas for a connected graph G requires proofs of size 2tw(G)javax.xml.bind.JAXBElement@531a834b in depth-d Frege systems for [Formula presented], where tw(G) is the treewidth of G. This extends HĂ„stad's recent lower bound from grid graphs to any graph. Furthermore, we prove tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size 2tw(G)javax.xml.bind.JAXBElement@25a4b51fpoly(s). Through this result we settle the question posed by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution
    corecore