149 research outputs found

    Satellite-based sea ice navigation for Prydz Bay, East Antarctica

    Get PDF
    Sea ice adversely impacts nautical, logistical and scientific missions in polar regions. Ship navigation benefits from up-to-date sea ice analyses at both regional and local scales. This study presents a satellite-based sea ice navigation system (SatSINS) that integrates observations and scientific output from remote sensing and meteorological data to develop optimum marine navigational routes in sea ice-covered waters, especially in areas where operational ice information is usually scarce. The system and its applications are presented in the context of a decision-making process to optimize the routing of the RV Xuelong during her passage through Prydz Bay, East Antarctica during three trips in the austral spring of 2011–2013. The study assesses scientifically-generated remote sensing ice parameters for their operational use in marine navigation. Evaluation criteria involve identification of priority parameters, their spatio-temporal requirements in relation to navigational needs, and their level of accuracy in conjunction with the severity of ice conditions. Coarse-resolution ice concentration maps are sufficient to delineate ice edge and develop a safe route when ice concentration is less than 70%, provided that ice dynamics, estimated from examining the cyclonic pattern, is not severe. Otherwise, fine-resolution radar data should be used to identify and avoid deformed ice. Satellite data lagging one day behind the actual location of the ship was sufficient in most cases although the proposed route may have to be adjusted. To evaluate the utility of SatSINS, deviation of the actual route from the proposed route was calculated and found to range between 165 m to about 16.0 km with standard deviations of 2.8–6.1 km. Growth of land-fast ice has proven to be an essential component of the system as it was estimated using a thermodynamic model with input from a meteorological station

    Detection of iceberg calving events in Prydz Bay, East Antarctica during 2013 – 2015 using LISS-IV/IRS-P6 satellite data

    Get PDF
    This study discusses the calving event took place in Prydz Bay of East Antarctica during the epoch of 2013–2015 using high resolution multispectral data from Indian Linear Imaging Self Scanning Sensor (LISS-IV) aboard IRS-P6 satellite. The present study has been conducted on Larsemann Hills, Prydz Bay, East Antarctica. The two LISS-IV images (5.8 m spatial resolution) acquired specifically 384 days apart (December 31, 2013 and January 19, 2015) were utilized to study the significant changes that have occurred in icebergs during this short epoch. A total of 369 common icebergs present in both images were identified for analysing the changes in their dimensions because of surface melting. All of these icebergs were found to have lost mass because of surface melting and ocean forced base melting; therefore, they have reduced in dimension depicted by 12.51% lapse in terms of surface area. In addition, the coastline was visually observed to have retracted, instigated by calving events from the polar ice sheet and generation of new icebergs in Prydz Bay. The average drift distance of these newly formed icebergs from the coastline was found to be 51.59 m. Our analysis estimates that the total number of icebergs decreased by 70, suggesting either the complete disintegration or significant drifting of these icebergs away from the coast during 2013–2015 period

    Resolving Fine-Scale Surface Features on Polar Sea Ice: A First Assessment of UAS Photogrammetry Without Ground Control

    Get PDF
    Mapping landfast sea ice at a fine spatial scale is not only meaningful for geophysical study, but is also of benefit for providing information about human activities upon it. The combination of unmanned aerial systems (UAS) with structure from motion (SfM) methods have already revolutionized the current close-range Earth observation paradigm. To test their feasibility in characterizing the properties and dynamics of fast ice, three flights were carried out in the 2016–2017 austral summer during the 33rd Chinese National Antarctic Expedition (CHINARE), focusing on the area of the Prydz Bay in East Antarctica. Three-dimensional models and orthomosaics from three sorties were constructed from a total of 205 photos using Agisoft PhotoScan software. Logistical challenges presented by the terrain precluded the deployment of a dedicated ground control network; however, it was still possible to indirectly assess the performance of the photogrammetric products through an analysis of the statistics of the matching network, bundle adjustment, and Monte-Carlo simulation. Our results show that the matching networks are quite strong, given a sufficient number of feature points (mostly > 20,000) or valid matches (mostly > 1000). The largest contribution to the total error using our direct georeferencing approach is attributed to inaccuracies in the onboard position and orientation system (POS) records, especially in the vehicle height and yaw angle. On one hand, the 3D precision map reveals that planimetric precision is usually about one-third of the vertical estimate (typically 20 cm in the network centre). On the other hand, shape-only errors account for less than 5% for the X and Y dimensions and 20% for the Z dimension. To further illustrate the UAS’s capability, six representative surface features are selected and interpreted by sea ice experts. Finally, we offer pragmatic suggestions and guidelines for planning future UAS-SfM surveys without the use of ground control. The work represents a pioneering attempt to comprehensively assess UAS-SfM survey capability in fast ice environments, and could serve as a reference for future improvements

    Expedition Programme PS140

    Get PDF

    National Report on Polar Program of China (2009)

    Get PDF
    The year of 2009 is the 25th anniversary of China` s Antarctic expedition, 20th anniversary of the establishment of the Zhongshan Stati on, 10th anniversary of China`s Arctic expedition, 5th anniversary of the establishment of the Yellow River Station, 20th anniversary of the founding of the China’s Polar Research Center, and it is also the 50th anniversary for the Antarctic Treaty to be openned for signature. With so much historic significance, this year has put a great deal of expectation to the progress and success for Chinese polar scientific exploration and research, and the Chinese polar scientists have bravely undertaken such historic responsibilities and carried out a series of Antarctic programs and achieved remarkable progress and success in the year of the 60th anniversary of the founding of the People`s Republic of China

    Progress in Antarctic marine geophysical research by the Chinese Polar Program

    Get PDF
    Marine geophysical survey by the Chinese National Antarctic Research Expedition (CHINARE) began with the first science expedition in 1984/1985, although only four cruises were performed in the vicinity of the Antarctic Peninsula between then and 1991/1992. After a 20 year hiatus, Antarctic marine geophysical research was relaunched by the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs (known simply as the Chinese Polar Program) in 2011/2012. Integrated geophysical surveys have been carried out annually since, in Prydz Bay and the Ross Sea. During the last 5 years, we have acquired about 5500 km of bathymetric, gravimetric, and magnetic lines; more than 1800 km of seismic reflection lines; and data from several heat flow and Ocean Bottom Seismometer (OBS) stations. This work has deepened understandings of geophysical features and their implications for geological tectonics and glacial history in Antarctica and its surrounding seas. Compiled Antarctic Bouguer and Airy isostatic gravity anomalies show different features of tectonics between the East Antarctic stability and West Antarctic activity. Calculated magnetic anomalies, heat flow anomalies and lithospheric anisotropy offshore of Prydz Bay may imply high heat capacity of mantle shielded by the continental shelf lithosphere, but high heat dissipation of mantle due to the Cretaceous breakup of Gondwana along the continent and ocean transition (COT), where large sediment ridges would be brought about by the Oligocene ice sheet retreat and would enlarge free-air gravity anomalies. In the western Ross Sea, CHINARE seismic profiles indicate northern termination of the Terror Rift and deposition time of the grounding zone wedge in the northern JOIDES Basin

    Some aspects of Chinese-Australian cooperation in Antarctic Research over the past forty years

    Get PDF
    China and Australia have been collaborating in Antarctic activities since the early 1980s and that collaboration has grown and become more formalized as China’s Antarctic program has expanded. This collaboration has involved personnel exchange, logistic support, environmental protection and particularly scientific research. China and Australia have signed a series of memorandums and treaties of friendship and cooperation on Antarctic activities in the past few years. Relevant mechanisms of cooperation between expedition plans and programs have been established, and the exchange and cooperation in people, science and technology, services, and supplies are undertaken across a range of organizations. Here we overview the history of the bilateral collaboration and provide a few examples of the many areas of cooperation. These examples are focused on activities in Hobart, the key centre of the Australian Antarctic program

    Physics of arctic landfast sea ice and implications on the cryosphere : An overview

    Get PDF
    Landfast sea ice (LFSI) is a critical component of the Arctic sea ice cover, and is changing as a result of Arctic amplification of climate change. Located in coastal areas, LFSI is of great significance to the physical and ecological systems of the Arctic shelf and in local indigenous communities. We present an overview of the physics of Arctic LFSI and the associated implications on the cryosphere. LFSI is kept in place by four fasten mechanisms. The evolution of LFSI is mostly determined by thermodynamic processes, and can therefore be used as an indicator of local climate change. We also present the dynamic processes that are active prior to the formation of LFSI, and those that are involved in LFSI freeze-up and breakup. Season length, thickness and extent of Arctic LFSI are decreasing and showing different trends in different seas, and therefore, causing environmental and climatic impacts. An improved coordination of Arctic LFSI observation is needed with a unified and systematic observation network supported by cooperation between scientists and indigenous communities, as well as a better application of remote sensing data to acquire detailed LFSI cryosphere physical parameters, hence revolving both its annual cycle and long-term changes. Integrated investigations combining in situ measurements, satellite remote sensing and numerical modeling are needed to improve our understanding of the physical mechanisms of LFSI seasonal changes and their impacts on the environment and climate.Peer reviewe
    • …
    corecore