1,032 research outputs found

    Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Get PDF
    Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin

    Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment

    Full text link
    Processing of digital images is continuously gaining in volume and relevance, with concomitant demands on data storage, transmission and processing power. Encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges. By encoding and processing the image information in quantum-mechanical systems, we here demonstrate the framework of quantum image processing, where a pure quantum state encodes the image information: we encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states. Our quantum image representation reduces the required number of qubits compared to existing implementations, and we present image processing algorithms that provide exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an image, we propose and implement a quantum algorithm that completes the task with only one single-qubit operation, independent of the size of the image. This demonstrates the potential of quantum image processing for highly efficient image and video processing in the big data era.Comment: 13 pages, including 9 figures and 5 appendixe

    Astronomical image manipulation in the transform domain

    Full text link
    It is well known that images are usually stored and transmitted in the compressed form to save memory space and I/O bandwidth. Among many image compression schemes, transform coding is a widely used coding method. Traditionally, processing a compressed image requires decompression first. Following manipulations, the processed image is compressed again for storage. To reduce the computational complexity and processing time, manipulating images in the semi-compressed or transform domain is an efficient solution; Many astronomical images are compressed and stored by JPEG and HCOM-PRESS, which are based on the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT), respectively. In this thesis, a suite of image processing algorithms in the transform domain, DCT and DWT, is developed. In particular, new methods for edge enhancement and minimum (MIN)/maximum (MAX) gray scale intensity estimation in the DCT domain are proposed. Algebraic operations and image interpolation in the DWT domain are addressed. The superiority of new algorithms over the conventional ones is demonstrated by comparing the time complexities and qualities of the processed image in the transform domain to those in the spatial domain
    corecore