972 research outputs found

    Remote Predictive Mapping 3. Optical Remote Sensing – A Review for Remote Predictive Geological Mapping in Northern Canada

    Get PDF
    Optical remotely sensed data have broad application for geological mapping in Canada’s North. Diverse remote sensors and digital image processing techniques have specific mapping functions, as demonstrated by numerous examples and associated interpretations. Moderate resolution optical sensors are useful for discriminating rock types, whereas sensors that offer increased spectral resolution (i.e. hyperspectral sensors) allow the geologist to identify certain rock types (mainly different types of carbonates, Fe-bearing rocks, sulphates and hydroxyl-(clay-) bearing rocks) as opposed to merely discriminating between them. Increased spatial resolution and the ability to visualize the earth’s surface in stereo are now offered by a host of optical sensors. However, the usefulness of optical remote sensing for geological mapping is highly dependent on the geologic, surficial and biophysical environment, and bedrock predictive mapping is most successful in areas not obscured by thick drift and vegetation/lichen cover, which is typical of environments proximal to coasts. In general, predictive mapping of surficial materials has fewer restrictions. Optical imagery can be enhanced in a variety of ways and fused with other geo-science datasets to produce imagery that can be visually interpreted in a GIS environment. Computer processing techniques are useful for undertaking more quantitative analyses of imagery for mapping bedrock, surficial materials and geomorphic or glacial features. SOMMAIRE Les données recueillies par télédétection optique offrent beaucoup de possibilités pour la cartographie géologique des régions nordiques canadiennes. La diversité des télécapteurs et des techniques de traitement numérique des données permet la définition de fonctions de cartographie spécifique, tel que l’illustre de nombreux exemples et interprétations associées. Des capteurs optiques de moyenne résolution sont utiles pour différencier les types de roche, alors que les capteurs à plus fines résolutions (les capteurs hyperspectraux, par ex.) permettent au géologue de subdiviser certains types de roches (principalement différents types de carbonates, roches ferrugineuses, roches à sulfates et à hydroxyle (argile). Une meilleure résolution spatiale et la fonction de vision stéréoscopique sont maintenant offertes sur une gamme de capteurs optiques. Cela dit, l’utilité de la télédétection optique pour la cartographie géologique est fortement tributaire des conditions de la géologie de surface et de son environnement biophysique, le potentiel prédictif de la télécartographie étant maximal pour les régions exemptes d’une couverture épaisse de dépôts glaciaires ou d’une couverture végétale/lichen caractéristique typique des environnements longeant les côtes. Divers procédés permettent de rehausser l’imagerie optique et de réaliser des fusions avec d’autres jeux de données géoscientifiques et de produire une imagerie visuellement inter-prétable en environnement de SIG. Les techniques de traitement de données par ordinateur sont utiles pour d’autres types d’analyse quantitative d’imagerie pour la cartographie des matériaux de couverture du socle et pour répertorier des formes glaciaires et géomorphologiques

    Remote Predictive Mapping 1. Remote Predictive Mapping (RPM): A Strategy for Geological Mapping of Canada’s North

    Get PDF
    Remote Predictive Mapping (RPM) techniques are being developed and refined by the Geological Survey of Canada for mapping Canada’s North. Remote Predictive Mapping should be considered an integral part of the geological mapping process designed to involve compilation, and re-compilation of data derived from existing geological maps, aerial photographs, satellite imagery, and airborne geophysical data. Predictive geological maps may be iteratively revised and upgraded to publishable geological maps by integrating remotely sensed data with newly acquired field and laboratory data, as RPM techniques are progressively tested and insight evolves. A predictive map, produced without collection of new, field-based data, may also serve as a first-order geologic map in areas where field-based studies cannot be accomplished due to expense of field access or remoteness. As a welcome consequence of adopting RPM into the normal work flow of any mapping or exploration project, there will, by necessity, be greater participation and integration of expertise of field geologists, geophysicists, Geographic Information System (GIS) and remote sensing specialists. Significantly, RPM also encourages geoscience organizations to make full use of all available geoscience data. This paper outlines a strategy for RPM and provides processing and interpretation examples based on a variety of geoscience data and interpretation techniques to be employed for geologic mapping. SOMMAIRE La Commission géologique du Canada développe et raffine des techniques de télécartographique prédictive (TCP) pour cartographier du Nord canadien. La télécartographie prédictive doit être perçue comme une composante intégrée d’un processus de cartographie géologique de compilation et de recompilation de données extraites de cartes géologiques, de photographies aériennes, d’imageries satellitaires, et de géophysiques aéroportées existantes. Les cartes géologiques prédictives peu-vent ainsi être révisées, mises à jour et publiées selon une approche itérative intégrant les données de télédétection avec les données de terrain et de laboratoire nouvellement acquises, au gré de l’évolution et du raffinement des techniques de TCP. Dans les cas de régions trop éloignées, ou parce que les coûts d’établissement de cartes géologiques de base régulières seraient prohibitifs, la TCP peut aussi être utilisée pour produire une carte géologique de base. D’entrée de jeu, on réalise que l’adoption de la TCP dans la routine de production normale de tout projet de cartographie ou d’exploration permettra, en soi, une meilleure prise en compte et une meilleure intégration des savoirs-faires des géologues de terrain, des géophysiciens et des spécialistes de la télédétection et des systèmes d’information géographique (SIG). Par sa nature même, la TCP permet aux organisations géoscientifiques de faire plein usage de toutes les données géoscientifiques dont elles disposent. Le présent article définit une stratégie de TCP et décrit des exemples de traitement et d’interprétation d’une variété de données géoscientifiques et de techniques d’interprétation utilisables pour la production de cartes géologiques

    Polarimetric Synthetic Aperture Radar (SAR) Application for Geological Mapping and Resource Exploration in the Canadian Arctic

    Get PDF
    The role of remote sensing in geological mapping has been rapidly growing by providing predictive maps in advance of field surveys. Remote predictive maps with broad spatial coverage have been produced for northern Canada and the Canadian Arctic which are typically very difficult to access. Multi and hyperspectral airborne and spaceborne sensors are widely used for geological mapping as spectral characteristics are able to constrain the minerals and rocks that are present in a target region. Rock surfaces in the Canadian Arctic are altered by extensive glacial activity and freeze-thaw weathering, and form different surface roughnesses depending on rock type. Different physical surface properties, such as surface roughness and soil moisture, can be revealed by distinct radar backscattering signatures at different polarizations. This thesis aims to provide a multidisciplinary approach for remote predictive mapping that integrates the lithological and physical surface properties of target rocks. This work investigates the physical surface properties of geological units in the Tunnunik and Haughton impact structures in the Canadian Arctic characterized by polarimetric synthetic aperture radar (SAR). It relates the radar scattering mechanisms of target surfaces to their lithological compositions from multispectral analysis for remote predictive geological mapping in the Canadian Arctic. This work quantitatively estimates the surface roughness relative to the transmitted radar wavelength and volumetric soil moisture by radar scattering model inversion. The SAR polarization signatures of different geological units were also characterized, which showed a significant correlation with their surface roughness. This work presents a modified radar scattering model for weathered rock surfaces. More broadly, it presents an integrative remote predictive mapping algorithm by combining multispectral and polarimetric SAR parameters

    Exploration for fossil and nuclear fuels from orbital altitudes

    Get PDF
    Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources

    Permafrost Distribution Mapping And Temperature Modeling Along The Alaska Highway Corridor, Interior Alaska

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2011An up-to-date permafrost distribution map is critical for making engineering decisions during the planning and design of any engineering project in Interior Alaska. I used a combination of empirical-statistical and remote sensing techniques to generate a high-resolution spatially continuous near-surface (< 1.6 m) permafrost map by exploiting the correlative relationships between permafrost and biophysical terrain parameters. A Binary Logistic Regression (BLR) model was used to establish the relationship between vegetation type, aspect-slope and permafrost presence. The logistic coefficients for each variable class obtained from the BLR model were supplied to respective variable classes mapped from remotely sensed data to estimate permafrost probability for every pixel. The BLR model predicts permafrost presence/absence at an accuracy of 88%. Near-surface permafrost occupies 37% of the total study area. A permafrost map based on the interpretation of airborne electromagnetic (EM) resistivity data shows 22.5 -- 43.5% of the total study area as underlain by permafrost. Permafrost distribution statistics from both the maps suggest near-surface permafrost distribution in the study area is sporadic (10 -- 50 % of the area underlain by permafrost). Changes in air temperature and/or winter snow depth are important factors responsible for permafrost aggradation or degradation. I evaluated the effects of past and recent (1941-2008) climate changes on permafrost and active-layer dynamics at selected locations using the Geophysical Institute Permafrost Laboratory model. Results revealed that active-layer thickness reached 0.58 and 1.0 m, and mean annual permafrost temperature increased by 1.6 and 1.7 �C during 1966-1994 at two sites in response to increased mean annual air temperature, mean summer air temperature and winter snow depth. The study found that active-layer thickness is not only a function of summer air temperature but also of mean annual air temperature and winter snow depth. Model simulation with a projected (2008-2098) climate scenario predicts 0.22 m loss of near-surface permafrost at one site and complete permafrost disappearance at another site by 2098. The contrasting permafrost behaviors at different sites under similar climate scenarios highlight the role of soil type and ground ice volume on permafrost dynamics; these factors determine permafrost resilience under a warming climate

    Les images satellitaires Radar. Utilisation en cartographie géologique et exploration minière (Guyane, Côte-d'Ivoire).

    No full text
    International audienceThe aim of the AURROS project conslsted in demonstrating the use of satellite radar data on sites representative of the problems encountered in geological and mineral exploralion. The objective is to improve characterisation methods for target zones, parlicularly in the early stages of the process leading to mining permit application. The dalabase integrales ERS (l and 2) data, RADARSAT (broad-swath Seansar mode and fine bi-angular viewing made) data, DEMs acquired by various means, and geophysical dala (airborne magnelics, spectral radiomelry). Various me/hods (fil/ering, geocoding and stereoscopy) have heen integrated or developed by BRGM to create differenl map types. These dala are analysed at various scales and validated using hvo approaches, namely checking in Ihe field and fusion wilh airhome geophysical data (spectral radiometry and aeromagnetics). The first results showed the radar to be a powerful mapping and deposit-prediction tool, and notably revealed that 1) the raw data con be used directly by geologists either for standard geological studies or as an exploration aid, and 2) fusion with geophysical data enables the identification of deformation structures where geophysics alone only reveals large masses, and rapidly and efficiently increases the possibilities of lithological discrimination. Correct use of the data nevertheless involves taking into consideration the scales used and currenl restrictions concerning the most suitable study environments. The development possibilities associated with radar stereoscopy constitute a major progress factor for the near future

    Bridging Arctic pathways: integrating hydrology, geomorphology and remote sensing in the North

    Get PDF
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2015This work presents improved approaches for integrating patterns and processes within hydrology, geomorphology, ecology and permafrost on Arctic landscapes. Emphasis was placed on addressing fundamental interdisciplinary questions using robust, repeatable methods. Water tracks were examined in the foothills of the Brooks Range to ascertain their role within the range of features that transport water in Arctic regions. Classes of water tracks were developed using multiple factor analysis based on their geomorphic, soil and vegetation characteristics. These classes were validated to verify that they were repeatable. Water tracks represented a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrated a new approach to better understanding regional hydrological patterns. The locations of the water track classes were mapped using a combination method where intermediate processing of spectral classifications, texture and topography were fed into random forests to identify the water track classes. Overall, the water track classes were best visualized where they were the most discrete from the background landscape in terms of both shape and content. Issues with overlapping and imbalances between water track classes were the biggest challenges. Resolving the spatial locations of different water tracks represents a significant step forward for understanding periglacial landscape dynamics. Leaf area index (LAI) calculations using the gap-method were optimized using normalized difference vegetation index (NDVI) as input for both WorldView-2 and Landsat-7 imagery. The study design used groups to separate the effects of surficial drainage networks and the relative magnitude of change in NDVI over time. LAI values were higher for the WorldView-2 data and for each sensor and group combination the distribution of LAI values was unique. This study indicated that there are tradeoffs between increased spatial resolution and the ability to differentiate landscape features versus the increase in variability when using NDVI for LAI calculations. The application of geophysical methods for permafrost characterization in Arctic road design and engineering was explored for a range of conditions including gravel river bars, burned tussock tundra and ice-wedge polygons. Interpretations were based on a combination of Directcurrent resistivity - electrical resistivity tomography (DCR-ERT), cryostratigraphic information via boreholes and geospatial (aerial photographs & digital elevation models) data. The resistivity data indicated the presence/absence of permafrost; location and depth of massive ground ice; and in some conditions changes in ice content. The placement of the boreholes strongly influenced how geophysical data can be interpreted for permafrost conditions and should be carefully considered during data collection strategies

    Twenty-Second Lunar and Planetary Science Conference

    Get PDF
    The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. Some of the topics covered include: planetary evolution, planetary satellites, planetary composition, planetary surfaces, planetary geology, volcanology, meteorite impacts and composition, and cosmic dust. Particular emphasis is placed on Mars and the Moon

    Age discrimination among basalt flows using digitally enhanced LANDSAT imagery

    Get PDF
    Digitally enhanced LANDSAT MSS data were used to discriminate among basalt flows of historical to Tertiary age, at a test site in Northwestern Saudi Arabia. Spectral signatures compared favorably with a field-defined classification that permits discrimination among five groups of basalt flows on the basis of geomorphic criteria. Characteristics that contributed to age definition include: surface texture, weathering, color, drainage evolution, and khabrah development. The inherent gradation in the evolution of geomorphic parameters, however, makes visual extrapolation between areas subjective. Therefore, incorporation of spectrally-derived volcanic units into the mapping process should produce more quantitatively consistent age groupings

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone
    • …
    corecore