2,497 research outputs found

    A Vehicle Routing Problem with Multiple Service Agreements

    Get PDF
    We consider a logistics service provider which arranges transportation services to customers with different service agreements. The most prominent feature of this service agreement is the time period in which these customers send their orders and want to retrieve delivery information. After customers place their orders, they require information about the driver and an early indication of the arrival times. At the moment, this information needs to be provided. The order information of other customers with a different service agreement that needs to be serviced in the same period might still be unknown. Ultimately all customers have to be planned, constrained by the information provided to the customers in the earlier stage. In this paper, we investigate how the logistic service provider plans its routes and communicates the driver and arrival time information in the phase where not all customers are known (stage 1). Once all customer orders are known (stage 2), the final routes can be determined, which adhere to the already communicated driver and arrival time information from stage 1, minimizing total routing cost. For this problem, an exact algorithm is presented. This problem is solved using a novel tractable branch-and-bound method and re-optimization in stage 2. Detailed results are presented, showing the improvements of using re-optimization. We show that integrating the planning of the customers with the different service agreements leads to significant cost savings compared to treating the customers separately (as is currently done by most logistics service providers).</p

    Forest planning utilizing high spatial resolution data

    Get PDF
    This thesis presents planning approaches adapted for high spatial resolution data from remote sensing and evaluate whether such approaches can enhance the provision of ecosystem services from forests. The presented methods are compared with conventional, stand-level methods. The main focus lies on the planning concept of dynamic treatment units (DTU), where treatments in small units for modelling ecosystem processes and forest management are clustered spatiotemporally to form treatment units realistic in practical forestry. The methodological foundation of the thesis is mainly airborne laser scanning data (raster cells 12.5x12.5 m2), different optimization methods and the forest decision support system Heureka. Paper I demonstrates a mixed-integer programming model for DTU planning, and the results highlight the economic advances of clustering harvests. Paper II and III presents an addition to a DTU heuristic from the literature and further evaluates its performance. Results show that direct modelling of fixed costs for harvest operations can improve plans and that DTU planning enhances the economic outcome of forestry. The higher spatial resolution of data in the DTU approach enables the planning model to assign management with higher precision than if stand-based planning is applied. Paper IV evaluates whether this phenomenon is also valid for ecological values. Here, an approach adapted for cell-level data is compared to a schematic approach, dealing with stand-level data, for the purpose of allocating retention patches. The evaluation of economic and ecological values indicate that high spatial resolution data and an adapted planning approach increased the ecological values, while differences in economy were small. In conclusion, the studies in this thesis demonstrate how forest planning can utilize high spatial resolution data from remote sensing, and the results suggest that there is a potential to increase the overall provision of ecosystem services if such methods are applied

    Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea

    Get PDF
    ObjectiveTo reduce premature deaths due to secondhand smoke (SHS) exposure among non-smokers, the Republic of Korea (ROK) adopted changes to the National Health Promotion Act, which allowed local governments to enact municipal ordinances to strengthen their authority to designate smoke-free areas and levy penalty fines. In this study, we examined national trends in SHS exposure after the introduction of these municipal ordinances at the city level in 2010.MethodsWe used interrupted time series analysis to assess whether the trends of SHS exposure in the workplace and at home, and the primary cigarette smoking rate changed following the policy adjustment in the national legislation in ROK. Population-standardized data for selected variables were retrieved from a nationally representative survey dataset and used to study the policy action’s effectiveness.ResultsFollowing the change in the legislation, SHS exposure in the workplace reversed course from an increasing (18% per year) trend prior to the introduction of these smoke-free ordinances to a decreasing (−10% per year) trend after adoption and enforcement of these laws (β2 = 0.18, p-value = 0.07; β3 = −0.10, p-value = 0.02). SHS exposure at home (β2 = 0.10, p-value = 0.09; β3 = −0.03, p-value = 0.14) and the primary cigarette smoking rate (β2 = 0.03, p-value = 0.10; β3 = 0.008, p-value = 0.15) showed no significant changes in the sampled period. Although analyses stratified by sex showed that the allowance of municipal ordinances resulted in reduced SHS exposure in the workplace for both males and females, they did not affect the primary cigarette smoking rate as much, especially among females.ConclusionStrengthening the role of local governments by giving them the authority to enact and enforce penalties on SHS exposure violation helped ROK to reduce SHS exposure in the workplace. However, smoking behaviors and related activities seemed to shift to less restrictive areas such as on the streets and in apartment hallways, negating some of the effects due to these ordinances. Future studies should investigate how smoke-free policies beyond public places can further reduce the SHS exposure in ROK

    Exploration autonome et efficiente de chantiers miniers souterrains inconnus avec un drone filaire

    Get PDF
    Abstract: Underground mining stopes are often mapped using a sensor located at the end of a pole that the operator introduces into the stope from a secure area. The sensor emits laser beams that provide the distance to a detected wall, thus creating a 3D map. This produces shadow zones and a low point density on the distant walls. To address these challenges, a research team from the Université de Sherbrooke is designing a tethered drone equipped with a rotating LiDAR for this mission, thus benefiting from several points of view. The wired transmission allows for unlimited flight time, shared computing, and real-time communication. For compatibility with the movement of the drone after tether entanglements, the excess length is integrated into an onboard spool, contributing to the drone payload. During manual piloting, the human factor causes problems in the perception and comprehension of a virtual 3D environment, as well as the execution of an optimal mission. This thesis focuses on autonomous navigation in two aspects: path planning and exploration. The system must compute a trajectory that maps the entire environment, minimizing the mission time and respecting the maximum onboard tether length. Path planning using a Rapidly-exploring Random Tree (RRT) quickly finds a feasible path, but the optimization is computationally expensive and the performance is variable and unpredictable. Exploration by the frontier method is representative of the space to be explored and the path can be optimized by solving a Traveling Salesman Problem (TSP) but existing techniques for a tethered drone only consider the 2D case and do not optimize the global path. To meet these challenges, this thesis presents two new algorithms. The first one, RRT-Rope, produces an equal or shorter path than existing algorithms in a significantly shorter computation time, up to 70% faster than the next best algorithm in a representative environment. A modified version of RRT-connect computes a feasible path, shortened with a deterministic technique that takes advantage of previously added intermediate nodes. The second algorithm, TAPE, is the first 3D cavity exploration method that focuses on minimizing mission time and unwound tether length. On average, the overall path is 4% longer than the method that solves the TSP, but the tether remains under the allowed length in 100% of the simulated cases, compared to 53% with the initial method. The approach uses a 2-level hierarchical architecture: global planning solves a TSP after frontier extraction, and local planning minimizes the path cost and tether length via a decision function. The integration of these two tools in the NetherDrone produces an intelligent system for autonomous exploration, with semi-autonomous features for operator interaction. This work opens the door to new navigation approaches in the field of inspection, mapping, and Search and Rescue missions.La cartographie des chantiers miniers souterrains est souvent réalisée à l’aide d’un capteur situé au bout d’une perche que l’opérateur introduit dans le chantier, depuis une zone sécurisée. Le capteur émet des faisceaux laser qui fournissent la distance à un mur détecté, créant ainsi une carte en 3D. Ceci produit des zones d’ombres et une faible densité de points sur les parois éloignées. Pour relever ces défis, une équipe de recherche de l’Université de Sherbrooke conçoit un drone filaire équipé d’un LiDAR rotatif pour cette mission, bénéficiant ainsi de plusieurs points de vue. La transmission filaire permet un temps de vol illimité, un partage de calcul et une communication en temps réel. Pour une compatibilité avec le mouvement du drone lors des coincements du fil, la longueur excédante est intégrée dans une bobine embarquée, qui contribue à la charge utile du drone. Lors d’un pilotage manuel, le facteur humain entraîne des problèmes de perception et compréhension d’un environnement 3D virtuel, et d’exécution d’une mission optimale. Cette thèse se concentre sur la navigation autonome sous deux aspects : la planification de trajectoire et l’exploration. Le système doit calculer une trajectoire qui cartographie l’environnement complet, en minimisant le temps de mission et en respectant la longueur maximale de fil embarquée. La planification de trajectoire à l’aide d’un Rapidly-exploring Random Tree (RRT) trouve rapidement un chemin réalisable, mais l’optimisation est coûteuse en calcul et la performance est variable et imprévisible. L’exploration par la méthode des frontières est représentative de l’espace à explorer et le chemin peut être optimisé en résolvant un Traveling Salesman Problem (TSP), mais les techniques existantes pour un drone filaire ne considèrent que le cas 2D et n’optimisent pas le chemin global. Pour relever ces défis, cette thèse présente deux nouveaux algorithmes. Le premier, RRT-Rope, produit un chemin égal ou plus court que les algorithmes existants en un temps de calcul jusqu’à 70% plus court que le deuxième meilleur algorithme dans un environnement représentatif. Une version modifiée de RRT-connect calcule un chemin réalisable, raccourci avec une technique déterministe qui tire profit des noeuds intermédiaires préalablement ajoutés. Le deuxième algorithme, TAPE, est la première méthode d’exploration de cavités en 3D qui minimise le temps de mission et la longueur du fil déroulé. En moyenne, le trajet global est 4% plus long que la méthode qui résout le TSP, mais le fil reste sous la longueur autorisée dans 100% des cas simulés, contre 53% avec la méthode initiale. L’approche utilise une architecture hiérarchique à 2 niveaux : la planification globale résout un TSP après extraction des frontières, et la planification locale minimise le coût du chemin et la longueur de fil via une fonction de décision. L’intégration de ces deux outils dans le NetherDrone produit un système intelligent pour l’exploration autonome, doté de fonctionnalités semi-autonomes pour une interaction avec l’opérateur. Les travaux réalisés ouvrent la porte à de nouvelles approches de navigation dans le domaine des missions d’inspection, de cartographie et de recherche et sauvetage

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Reoptimisation strategies for dynamic vehicle routing problems with proximity-dependent nodes

    Get PDF
    Autonomous vehicles create new opportunities as well as new challenges to dynamic vehicle routing. The introduction of autonomous vehicles as information-collecting agents results in scenarios, where dynamic nodes are found by proximity. This paper presents a novel dynamic vehicle-routing problem variant with proximity-dependent nodes. Here, we introduced a novel variable, detectability, which determines whether a proximal dynamic node will be detected, based on the sight radius of the vehicle. The problem considered is motivated by autonomous weed-spraying vehicles in large agricultural operations. This work is generalisable to many other autonomous vehicle applications. The first step to crafting a solution approach for the problem is to decide when reoptimisation should be triggered. Two reoptimisation trigger strategies are considered—exogenous and endogenous. Computational experiments compared the strategies for both the classical dynamic vehicle routing problem as well as the introduced variant. Experiments used extensive standardised vehicle-routing problem benchmarks with varying degrees of dynamism and geographical node distributions. The results showed that for both the classical problem and the novel variant, an endogenous trigger strategy is better in most cases, while an exogenous trigger strategy is only suitable when both detectability and dynamism are low. Furthermore, the optimal level of detectability was shown to be dependent on the combination of trigger, degree of dynamism, and geographical node distribution, meaning practitioners may determine the required detectability based on the attributes of their specific problem

    Technology for Low Resolution Space Based RSO Detection and Characterisation

    Get PDF
    Space Situational Awareness (SSA) refers to all activities to detect, identify and track objects in Earth orbit. SSA is critical to all current and future space activities and protect space assets by providing access control, conjunction warnings, and monitoring status of active satellites. Currently SSA methods and infrastructure are not sufficient to account for the proliferations of space debris. In response to the need for better SSA there has been many different areas of research looking to improve SSA most of the requiring dedicated ground or space-based infrastructure. In this thesis, a novel approach for the characterisation of RSO’s (Resident Space Objects) from passive low-resolution space-based sensors is presented with all the background work performed to enable this novel method. Low resolution space-based sensors are common on current satellites, with many of these sensors being in space using them passively to detect RSO’s can greatly augment SSA with out expensive infrastructure or long lead times. One of the largest hurtles to overcome with research in the area has to do with the lack of publicly available labelled data to test and confirm results with. To overcome this hurtle a simulation software, ORBITALS, was created. To verify and validate the ORBITALS simulator it was compared with the Fast Auroral Imager images, which is one of the only publicly available low-resolution space-based images found with auxiliary data. During the development of the ORBITALS simulator it was found that the generation of these simulated images are computationally intensive when propagating the entire space catalog. To overcome this an upgrade of the currently used propagation method, Specialised General Perturbation Method 4th order (SGP4), was performed to allow the algorithm to run in parallel reducing the computational time required to propagate entire catalogs of RSO’s. From the results it was found that the standard facet model with a particle swarm optimisation performed the best estimating an RSO’s attitude with a 0.66 degree RMSE accuracy across a sequence, and ~1% MAPE accuracy for the optical properties. This accomplished this thesis goal of demonstrating the feasibility of low-resolution passive RSO characterisation from space-based platforms in a simulated environment
    • …
    corecore