79,232 research outputs found

    Computationally Efficient Trajectory Optimization for Linear Control Systems with Input and State Constraints

    Full text link
    This paper presents a trajectory generation method that optimizes a quadratic cost functional with respect to linear system dynamics and to linear input and state constraints. The method is based on continuous-time flatness-based trajectory generation, and the outputs are parameterized using a polynomial basis. A method to parameterize the constraints is introduced using a result on polynomial nonpositivity. The resulting parameterized problem remains linear-quadratic and can be solved using quadratic programming. The problem can be further simplified to a linear programming problem by linearization around the unconstrained optimum. The method promises to be computationally efficient for constrained systems with a high optimization horizon. As application, a predictive torque controller for a permanent magnet synchronous motor which is based on real-time optimization is presented.Comment: Proceedings of the American Control Conference (ACC), pp. 1904-1909, San Francisco, USA, June 29 - July 1, 201

    Sampling-based speech parameter generation using moment-matching networks

    Full text link
    This paper presents sampling-based speech parameter generation using moment-matching networks for Deep Neural Network (DNN)-based speech synthesis. Although people never produce exactly the same speech even if we try to express the same linguistic and para-linguistic information, typical statistical speech synthesis produces completely the same speech, i.e., there is no inter-utterance variation in synthetic speech. To give synthetic speech natural inter-utterance variation, this paper builds DNN acoustic models that make it possible to randomly sample speech parameters. The DNNs are trained so that they make the moments of generated speech parameters close to those of natural speech parameters. Since the variation of speech parameters is compressed into a low-dimensional simple prior noise vector, our algorithm has lower computation cost than direct sampling of speech parameters. As the first step towards generating synthetic speech that has natural inter-utterance variation, this paper investigates whether or not the proposed sampling-based generation deteriorates synthetic speech quality. In evaluation, we compare speech quality of conventional maximum likelihood-based generation and proposed sampling-based generation. The result demonstrates the proposed generation causes no degradation in speech quality.Comment: Submitted to INTERSPEECH 201

    Topology-Guided Path Integral Approach for Stochastic Optimal Control in Cluttered Environment

    Full text link
    This paper addresses planning and control of robot motion under uncertainty that is formulated as a continuous-time, continuous-space stochastic optimal control problem, by developing a topology-guided path integral control method. The path integral control framework, which forms the backbone of the proposed method, re-writes the Hamilton-Jacobi-Bellman equation as a statistical inference problem; the resulting inference problem is solved by a sampling procedure that computes the distribution of controlled trajectories around the trajectory by the passive dynamics. For motion control of robots in a highly cluttered environment, however, this sampling can easily be trapped in a local minimum unless the sample size is very large, since the global optimality of local minima depends on the degree of uncertainty. Thus, a homology-embedded sampling-based planner that identifies many (potentially) local-minimum trajectories in different homology classes is developed to aid the sampling process. In combination with a receding-horizon fashion of the optimal control the proposed method produces a dynamically feasible and collision-free motion plans without being trapped in a local minimum. Numerical examples on a synthetic toy problem and on quadrotor control in a complex obstacle field demonstrate the validity of the proposed method.Comment: arXiv admin note: text overlap with arXiv:1510.0534

    Optimal trajectory generation in ocean flows

    Get PDF
    In this paper it is shown that Lagrangian Coherent Structures (LCS) are useful in determining near optimal trajectories for autonomous underwater gliders in a dynamic ocean environment. This opens the opportunity for optimal path planning of autonomous underwater vehicles by studying the global flow geometry via dynamical systems methods. Optimal glider paths were computed for a 2-dimensional kinematic model of an end-point glider problem. Numerical solutions to the optimal control problem were obtained using Nonlinear Trajectory Generation (NTG) software. The resulting solution is compared to corresponding results on LCS obtained using the Direct Lyapunov Exponent method. The velocity data used for these computations was obtained from measurements taken in August, 2000, by HF-Radar stations located around Monterey Bay, CA
    • 

    corecore