233,677 research outputs found

    Sparse image reconstruction on the sphere: analysis and synthesis

    Get PDF
    We develop techniques to solve ill-posed inverse problems on the sphere by sparse regularisation, exploiting sparsity in both axisymmetric and directional scale-discretised wavelet space. Denoising, inpainting, and deconvolution problems, and combinations thereof, are considered as examples. Inverse problems are solved in both the analysis and synthesis settings, with a number of different sampling schemes. The most effective approach is that with the most restricted solution-space, which depends on the interplay between the adopted sampling scheme, the selection of the analysis/synthesis problem, and any weighting of the l1 norm appearing in the regularisation problem. More efficient sampling schemes on the sphere improve reconstruction fidelity by restricting the solution-space and also by improving sparsity in wavelet space. We apply the technique to denoise Planck 353 GHz observations, improving the ability to extract the structure of Galactic dust emission, which is important for studying Galactic magnetism.Comment: 11 pages, 6 Figure

    Sparse Image Reconstruction on the Sphere: Analysis and Synthesis

    Get PDF
    We develop techniques to solve ill-posed inverse problems on the sphere by sparse regularization, exploiting sparsity in both axisymmetric and directional scale-discretized wavelet space. Denoising, in painting, and deconvolution problems and combinations thereof, are considered as examples. Inverse problems are solved in both the analysis and synthesis settings, with a number of different sampling schemes. The most effective approach is that with the most restricted solution-space, which depends on the interplay between the adopted sampling scheme, the selection of the analysis/synthesis problem, and any weighting of the ℓ1 norm appearing in the regularization problem. More efficient sampling schemes on the sphere improve reconstruction fidelity by restricting the solution-space and also by improving sparsity in wavelet space. We apply the technique to denoise Planck 353-GHz observations, improving the ability to extract the structure of Galactic dust emission, which is important for studying Galactic magnetism

    Deterministic Sampling of Multivariate Densities based on Projected Cumulative Distributions

    Get PDF
    We want to approximate general multivariate probability density functions by deterministic sample sets. For optimal sampling, the closeness to the given continuous density has to be assessed. This is a difficult challenge in multivariate settings. Simple solutions are restricted to the one-dimensional case. In this paper, we propose to employ one-dimensional density projections. These are the Radon transforms of the densities. For every projection, we compute their cumulative distribution function. These Projected Cumulative Distributions (PCDs) are compared for all possible projections (or a discrete set thereof). This leads to a tractable distance measure in multivariate space. The proposed approximation method is efficient as calculating the distance measure mainly entails sorting in one dimension. It is also surprisingly simple to implement.Comment: 21 pages, 10 figure

    Context Attentive Bandits: Contextual Bandit with Restricted Context

    Full text link
    We consider a novel formulation of the multi-armed bandit model, which we call the contextual bandit with restricted context, where only a limited number of features can be accessed by the learner at every iteration. This novel formulation is motivated by different online problems arising in clinical trials, recommender systems and attention modeling. Herein, we adapt the standard multi-armed bandit algorithm known as Thompson Sampling to take advantage of our restricted context setting, and propose two novel algorithms, called the Thompson Sampling with Restricted Context(TSRC) and the Windows Thompson Sampling with Restricted Context(WTSRC), for handling stationary and nonstationary environments, respectively. Our empirical results demonstrate advantages of the proposed approaches on several real-life datasetsComment: IJCAI 201

    Approximately Sampling Elements with Fixed Rank in Graded Posets

    Full text link
    Graded posets frequently arise throughout combinatorics, where it is natural to try to count the number of elements of a fixed rank. These counting problems are often #P\#\textbf{P}-complete, so we consider approximation algorithms for counting and uniform sampling. We show that for certain classes of posets, biased Markov chains that walk along edges of their Hasse diagrams allow us to approximately generate samples with any fixed rank in expected polynomial time. Our arguments do not rely on the typical proofs of log-concavity, which are used to construct a stationary distribution with a specific mode in order to give a lower bound on the probability of outputting an element of the desired rank. Instead, we infer this directly from bounds on the mixing time of the chains through a method we call balanced bias\textit{balanced bias}. A noteworthy application of our method is sampling restricted classes of integer partitions of nn. We give the first provably efficient Markov chain algorithm to uniformly sample integer partitions of nn from general restricted classes. Several observations allow us to improve the efficiency of this chain to require O(n1/2log(n))O(n^{1/2}\log(n)) space, and for unrestricted integer partitions, expected O(n9/4)O(n^{9/4}) time. Related applications include sampling permutations with a fixed number of inversions and lozenge tilings on the triangular lattice with a fixed average height.Comment: 23 pages, 12 figure

    Memory Bounded Open-Loop Planning in Large POMDPs using Thompson Sampling

    Full text link
    State-of-the-art approaches to partially observable planning like POMCP are based on stochastic tree search. While these approaches are computationally efficient, they may still construct search trees of considerable size, which could limit the performance due to restricted memory resources. In this paper, we propose Partially Observable Stacked Thompson Sampling (POSTS), a memory bounded approach to open-loop planning in large POMDPs, which optimizes a fixed size stack of Thompson Sampling bandits. We empirically evaluate POSTS in four large benchmark problems and compare its performance with different tree-based approaches. We show that POSTS achieves competitive performance compared to tree-based open-loop planning and offers a performance-memory tradeoff, making it suitable for partially observable planning with highly restricted computational and memory resources.Comment: Presented at AAAI 201
    corecore