47,870 research outputs found

    On Some Distributions Arising from Certain Generalized Sampling Schemes

    Get PDF
    With the notion of success in a series of trials extended to refer to a run of like outcomes, several new distributions are obtained as the result of sampling from an urn without replacement or with additional replacements. In this context, the hypergeometric, negative hypergeometric, logarithmic series, generalized Waring, Polya and inverse Polya distributions are extended and their properties are studieddistribution of order k, hypergeometric, negative hypergeometric, logarithmic series, generalized Waring distribution, binomial, Poisson, negative binomial, Polya and inverse Polya distribution

    On the Sum of Order Statistics and Applications to Wireless Communication Systems Performances

    Full text link
    We consider the problem of evaluating the cumulative distribution function (CDF) of the sum of order statistics, which serves to compute outage probability (OP) values at the output of generalized selection combining receivers. Generally, closed-form expressions of the CDF of the sum of order statistics are unavailable for many practical distributions. Moreover, the naive Monte Carlo (MC) method requires a substantial computational effort when the probability of interest is sufficiently small. In the region of small OP values, we propose instead two effective variance reduction techniques that yield a reliable estimate of the CDF with small computing cost. The first estimator, which can be viewed as an importance sampling estimator, has bounded relative error under a certain assumption that is shown to hold for most of the challenging distributions. An improvement of this estimator is then proposed for the Pareto and the Weibull cases. The second is a conditional MC estimator that achieves the bounded relative error property for the Generalized Gamma case and the logarithmic efficiency in the Log-normal case. Finally, the efficiency of these estimators is compared via various numerical experiments

    Time-causal and time-recursive spatio-temporal receptive fields

    Get PDF
    We present an improved model and theory for time-causal and time-recursive spatio-temporal receptive fields, based on a combination of Gaussian receptive fields over the spatial domain and first-order integrators or equivalently truncated exponential filters coupled in cascade over the temporal domain. Compared to previous spatio-temporal scale-space formulations in terms of non-enhancement of local extrema or scale invariance, these receptive fields are based on different scale-space axiomatics over time by ensuring non-creation of new local extrema or zero-crossings with increasing temporal scale. Specifically, extensions are presented about (i) parameterizing the intermediate temporal scale levels, (ii) analysing the resulting temporal dynamics, (iii) transferring the theory to a discrete implementation, (iv) computing scale-normalized spatio-temporal derivative expressions for spatio-temporal feature detection and (v) computational modelling of receptive fields in the lateral geniculate nucleus (LGN) and the primary visual cortex (V1) in biological vision. We show that by distributing the intermediate temporal scale levels according to a logarithmic distribution, we obtain much faster temporal response properties (shorter temporal delays) compared to a uniform distribution. Specifically, these kernels converge very rapidly to a limit kernel possessing true self-similar scale-invariant properties over temporal scales, thereby allowing for true scale invariance over variations in the temporal scale, although the underlying temporal scale-space representation is based on a discretized temporal scale parameter. We show how scale-normalized temporal derivatives can be defined for these time-causal scale-space kernels and how the composed theory can be used for computing basic types of scale-normalized spatio-temporal derivative expressions in a computationally efficient manner.Comment: 39 pages, 12 figures, 5 tables in Journal of Mathematical Imaging and Vision, published online Dec 201

    Multifractal model of asset returns with leverage effect

    Full text link
    Multifractal processes are a relatively new tool of stock market analysis. Their power lies in the ability to take multiple orders of autocorrelations into account explicitly. In the first part of the paper we discuss the framework of the Lux model and refine the underlying phenomenological picture. We also give a procedure of fitting all parameters to empirical data. We present a new approach to account for the effective length of power-law memory in volatility. The second part of the paper deals with the consequences of asymmetry in returns. We incorporate two related stylized facts, skewness and leverage autocorrelations into the model. Then from Monte Carlo measurements we show, that this asymmetry significantly increases the mean squared error of volatility forecasts. Based on a filtering method we give evidence on similar behavior in empirical data.Comment: 23 pages, 8 figures, updated some figures and references, fixed two typos, accepted to Physica

    Generalized Negative Binomial Processes and the Representation of Cluster Structures

    Full text link
    The paper introduces the concept of a cluster structure to define a joint distribution of the sample size and its exchangeable random partitions. The cluster structure allows the probability distribution of the random partitions of a subset of the sample to be dependent on the sample size, a feature not presented in a partition structure. A generalized negative binomial process count-mixture model is proposed to generate a cluster structure, where in the prior the number of clusters is finite and Poisson distributed and the cluster sizes follow a truncated negative binomial distribution. The number and sizes of clusters can be controlled to exhibit distinct asymptotic behaviors. Unique model properties are illustrated with example clustering results using a generalized Polya urn sampling scheme. The paper provides new methods to generate exchangeable random partitions and to control both the cluster-number and cluster-size distributions.Comment: 30 pages, 8 figure
    • …
    corecore