60,264 research outputs found

    Sampling and reconstruction of operators

    Full text link
    We study the recovery of operators with bandlimited Kohn-Nirenberg symbol from the action of such operators on a weighted impulse train, a procedure we refer to as operator sampling. Kailath, and later Kozek and the authors have shown that operator sampling is possible if the symbol of the operator is bandlimited to a set with area less than one. In this paper we develop explicit reconstruction formulas for operator sampling that generalize reconstruction formulas for bandlimited functions. We give necessary and sufficient conditions on the sampling rate that depend on size and geometry of the bandlimiting set. Moreover, we show that under mild geometric conditions, classes of operators bandlimited to an unknown set of area less than one-half permit sampling and reconstruction. A similar result considering unknown sets of area less than one was independently achieved by Heckel and Boelcskei. Operators with bandlimited symbols have been used to model doubly dispersive communication channels with slowly-time-varying impulse response. The results in this paper are rooted in work by Bello and Kailath in the 1960s.Comment: Submitted to IEEE Transactions on Information Theor

    Sampling of operators

    Full text link
    Sampling and reconstruction of functions is a central tool in science. A key result is given by the sampling theorem for bandlimited functions attributed to Whittaker, Shannon, Nyquist, and Kotelnikov. We develop an analogous sampling theory for operators which we call bandlimited if their Kohn-Nirenberg symbols are bandlimited. We prove sampling theorems for such operators and show that they are extensions of the classical sampling theorem

    Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere

    Get PDF
    Using coherent-state techniques, we prove a sampling theorem for Majorana's (holomorphic) functions on the Riemann sphere and we provide an exact reconstruction formula as a convolution product of NN samples and a given reconstruction kernel (a sinc-type function). We also discuss the effect of over- and under-sampling. Sample points are roots of unity, a fact which allows explicit inversion formulas for resolution and overlapping kernel operators through the theory of Circulant Matrices and Rectangular Fourier Matrices. The case of band-limited functions on the Riemann sphere, with spins up to JJ, is also considered. The connection with the standard Euler angle picture, in terms of spherical harmonics, is established through a discrete Bargmann transform.Comment: 26 latex pages. Final version published in J. Fourier Anal. App

    Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation

    Get PDF
    Photoacoustic computed tomography with compressed sensing (CS-PACT) is a commonly used imaging strategy for sparse-sampling PACT. However, it is very time-consuming because of the iterative process involved in the image reconstruction. In this paper, we present a graphics processing unit (GPU)-based parallel computation framework for total-variation-based CS-PACT and adapted into a custom-made PACT system. Specifically, five compute-intensive operators are extracted from the iteration algorithm and are redesigned for parallel performance on a GPU. We achieved an image reconstruction speed 24–31 times faster than the CPU performance. We performed in vivo experiments on human hands to verify the feasibility of our developed method

    Image Reconstruction from Undersampled Confocal Microscopy Data using Multiresolution Based Maximum Entropy Regularization

    Full text link
    We consider the problem of reconstructing 2D images from randomly under-sampled confocal microscopy samples. The well known and widely celebrated total variation regularization, which is the L1 norm of derivatives, turns out to be unsuitable for this problem; it is unable to handle both noise and under-sampling together. This issue is linked with the notion of phase transition phenomenon observed in compressive sensing research, which is essentially the break-down of total variation methods, when sampling density gets lower than certain threshold. The severity of this breakdown is determined by the so-called mutual incoherence between the derivative operators and measurement operator. In our problem, the mutual incoherence is low, and hence the total variation regularization gives serious artifacts in the presence of noise even when the sampling density is not very low. There has been very few attempts in developing regularization methods that perform better than total variation regularization for this problem. We develop a multi-resolution based regularization method that is adaptive to image structure. In our approach, the desired reconstruction is formulated as a series of coarse-to-fine multi-resolution reconstructions; for reconstruction at each level, the regularization is constructed to be adaptive to the image structure, where the information for adaption is obtained from the reconstruction obtained at coarser resolution level. This adaptation is achieved by using maximum entropy principle, where the required adaptive regularization is determined as the maximizer of entropy subject to the information extracted from the coarse reconstruction as constraints. We demonstrate the superiority of the proposed regularization method over existing ones using several reconstruction examples

    Applications of M.G. Krein's Theory of Regular Symmetric Operators to Sampling Theory

    Full text link
    The classical Kramer sampling theorem establishes general conditions that allow the reconstruction of functions by mean of orthogonal sampling formulae. One major task in sampling theory is to find concrete, non trivial realizations of this theorem. In this paper we provide a new approach to this subject on the basis of the M. G. Krein's theory of representation of simple regular symmetric operators having deficiency indices (1,1). We show that the resulting sampling formulae have the form of Lagrange interpolation series. We also characterize the space of functions reconstructible by our sampling formulae. Our construction allows a rigorous treatment of certain ideas proposed recently in quantum gravity.Comment: 15 pages; v2: minor changes in abstract, addition of PACS numbers, changes in some keywords, some few changes in the introduction, correction of the proof of the last theorem, and addition of some comments at the end of the fourth sectio

    Local-set-based Graph Signal Reconstruction

    Full text link
    Signal processing on graph is attracting more and more attentions. For a graph signal in the low-frequency subspace, the missing data associated with unsampled vertices can be reconstructed through the sampled data by exploiting the smoothness of the graph signal. In this paper, the concept of local set is introduced and two local-set-based iterative methods are proposed to reconstruct bandlimited graph signal from sampled data. In each iteration, one of the proposed methods reweights the sampled residuals for different vertices, while the other propagates the sampled residuals in their respective local sets. These algorithms are built on frame theory and the concept of local sets, based on which several frames and contraction operators are proposed. We then prove that the reconstruction methods converge to the original signal under certain conditions and demonstrate the new methods lead to a significantly faster convergence compared with the baseline method. Furthermore, the correspondence between graph signal sampling and time-domain irregular sampling is analyzed comprehensively, which may be helpful to future works on graph signals. Computer simulations are conducted. The experimental results demonstrate the effectiveness of the reconstruction methods in various sampling geometries, imprecise priori knowledge of cutoff frequency, and noisy scenarios.Comment: 28 pages, 9 figures, 6 tables, journal manuscrip
    corecore