159 research outputs found

    On the sample consensus robust estimation paradigm: comprehensive survey and novel algorithms with applications.

    Get PDF
    Master of Science in Statistics and Computer Science.University of KwaZulu-Natal, Durban 2016.This study begins with a comprehensive survey of existing variants of the Random Sample Consensus (RANSAC) algorithm. Then, five new ones are contributed. RANSAC, arguably the most popular robust estimation algorithm in computer vision, has limitations in accuracy, efficiency and repeatability. Research into techniques for overcoming these drawbacks, has been active for about two decades. In the last one-and-half decade, nearly every single year had at least one variant published: more than ten, in the last two years. However, many existing variants compromise two attractive properties of the original RANSAC: simplicity and generality. Some introduce new operations, resulting in loss of simplicity, while many of those that do not introduce new operations, require problem-specific priors. In this way, they trade off generality and introduce some complexity, as well as dependence on other steps of the workflow of applications. Noting that these observations may explain the persisting trend, of finding only the older, simpler variants in ‘mainstream’ computer vision software libraries, this work adopts an approach that preserves the two mentioned properties. Modification of the original algorithm, is restricted to only search strategy replacement, since many drawbacks of RANSAC are consequences of the search strategy it adopts. A second constraint, serving the purpose of preserving generality, is that this ‘ideal’ strategy, must require no problem-specific priors. Such a strategy is developed, and reported in this dissertation. Another limitation, yet to be overcome in literature, but is successfully addressed in this study, is the inherent variability, in RANSAC. A few theoretical discoveries are presented, providing insights on the generic robust estimation problem. Notably, a theorem proposed as an original contribution of this research, reveals insights, that are foundational to newly proposed algorithms. Experiments on both generic and computer-vision-specific data, show that all proposed algorithms, are generally more accurate and more consistent, than RANSAC. Moreover, they are simpler in the sense that, they do not require some of the input parameters of RANSAC. Interestingly, although non-exhaustive in search like the typical RANSAC-like algorithms, three of these new algorithms, exhibit absolute non-randomness, a property that is not claimed by any existing variant. One of the proposed algorithms, is fully automatic, eliminating all requirements of user-supplied input parameters. Two of the proposed algorithms, are implemented as contributed alternatives to the homography estimation function, provided in MATLAB’s computer vision toolbox, after being shown to improve on the performance of M-estimator Sample Consensus (MSAC). MSAC has been the choice in all releases of the toolbox, including the latest 2015b. While this research is motivated by computer vision applications, the proposed algorithms, being generic, can be applied to any model-fitting problem from other scientific fields

    Design of an artificial intelligence model that refines the results of analysis in economic decision making. The case of final energy consumption in the UE

    Get PDF
    [ES] El objetivo de este Trabajo de Fin de Grado, titulado ‘Diseño de un modelo de Inteligencia Artificial que afina los resultados del análisis en la toma de decisiones en economía: el caso del consumo final de energía en la UE’, es arrojar luz sobre el potencial de la Inteligencia Artificial (IA) para el proceso de toma de decisiones. El estudio comienza estableciendo las bases del enfoque tradicional para la toma de decisiones y analizando los procesos que existen. Además, se definen las limitaciones de estos enfoques tradicionales. La siguiente sección explora los nuevos enfoques basados en IA. En primer lugar, se establecen los conceptos fundamentales de la IA. Además, se aclaran las diferencias entre IA y ‘Machine Learning’. Luego, se profundiza en el proceso de toma de decisiones utilizando esta tecnología. Habiendo sentado las bases, la investigación se adentra en los efectos económicos que surgen de la integración de la IA en empresas y organizaciones internacionales, diferenciando entre el nivel de la empresa y las repercusiones micro y macroeconómicas. Por último, se presenta un estudio de un caso real en el sector energético europeo, para comparar el rendimiento predictivo de los métodos tradicionales con las técnicas novedosas de la IA.[EN] The objective of this Final Degree Dissertation, entitled ‘Design of an Artificial Intelligence model that refines the results of the analysis in economic decision making: the case of final energy consumption in the UE’ is to shed light on the potential of Artificial Intelligence (AI) from a decision-maker perspective. The study commences by establishing the bases of the traditional way of conducting data-driven decisions and discussing the various processes that exist. Additionally, it defines the limitations of these traditional approaches. The subsequent section explores the novel AI approaches for the decision making process, first, it establishes the fundamental concepts of AI. Additionally, it clarifies the distinctions between AI and Machine Learning. Then, it dives into the process of making decisions using AI, proposing examples of techniques employed in different areas. Having laid the groundwork, the research delves into the economic effects that arise from the integration of AI in businesses and international organizations, distinguishing between firm level, and microeconomic and macroeconomic level repercussions. Lastly, a real-world case study in the European energy sector is presented, to compare the predictive performance of traditional methods with AI techniques

    Fast and robust image feature matching methods for computer vision applications

    Get PDF
    Service robotic systems are designed to solve tasks such as recognizing and manipulating objects, understanding natural scenes, navigating in dynamic and populated environments. It's immediately evident that such tasks cannot be modeled in all necessary details as easy as it is with industrial robot tasks; therefore, service robotic system has to have the ability to sense and interact with the surrounding physical environment through a multitude of sensors and actuators. Environment sensing is one of the core problems that limit the deployment of mobile service robots since existing sensing systems are either too slow or too expensive. Visual sensing is the most promising way to provide a cost effective solution to the mobile robot sensing problem. It's usually achieved using one or several digital cameras placed on the robot or distributed in its environment. Digital cameras are information rich sensors and are relatively inexpensive and can be used to solve a number of key problems for robotics and other autonomous intelligent systems, such as visual servoing, robot navigation, object recognition, pose estimation, and much more. The key challenges to taking advantage of this powerful and inexpensive sensor is to come up with algorithms that can reliably and quickly extract and match the useful visual information necessary to automatically interpret the environment in real-time. Although considerable research has been conducted in recent years on the development of algorithms for computer and robot vision problems, there are still open research challenges in the context of the reliability, accuracy and processing time. Scale Invariant Feature Transform (SIFT) is one of the most widely used methods that has recently attracted much attention in the computer vision community due to the fact that SIFT features are highly distinctive, and invariant to scale, rotation and illumination changes. In addition, SIFT features are relatively easy to extract and to match against a large database of local features. Generally, there are two main drawbacks of SIFT algorithm, the first drawback is that the computational complexity of the algorithm increases rapidly with the number of key-points, especially at the matching step due to the high dimensionality of the SIFT feature descriptor. The other one is that the SIFT features are not robust to large viewpoint changes. These drawbacks limit the reasonable use of SIFT algorithm for robot vision applications since they require often real-time performance and dealing with large viewpoint changes. This dissertation proposes three new approaches to address the constraints faced when using SIFT features for robot vision applications, Speeded up SIFT feature matching, robust SIFT feature matching and the inclusion of the closed loop control structure into object recognition and pose estimation systems. The proposed methods are implemented and tested on the FRIEND II/III service robotic system. The achieved results are valuable to adapt SIFT algorithm to the robot vision applications

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Repurposing existing skeletal spatial structure (SkS) system designs using the Field Information Modeling (FIM) framework for generative decision-support in future construction projects

    Get PDF
    Skeletal spatial structure (SkS) systems are modular systems which have shown promise to support mass customization, and sustainability in construction. SkS have been used extensively in the reconstruction efforts since World War II, particularly to build geometrically flexible and free-form structures. By employing advanced digital engineering and construction practices, the existing SkS designs may be repurposed to generate new optimal designs that satisfy current construction demands of contemporary societies. To this end, this study investigated the application of point cloud processing using the Field Information Modeling (FIM) framework for the digital documentation and generative redesign of existing SkS systems. Three new algorithms were proposed to (i) expand FIM to include generative decision-support; (ii) generate as-built building information modeling (BIM) for SkS; and (iii) modularize SkS designs with repeating patterns for optimal production and supply chain management. These algorithms incorporated a host of new AI-inspired methods, including support vector machine (SVM) for decision support; Bayesian optimization for neighborhood definition; Bayesian Gaussian mixture clustering for modularization; and Monte Carlo stochastic multi-criteria decision making (MCDM) for selection of the top Pareto front solutions obtained by the non-dominant sorting Genetic Algorithm (NSGA II). The algorithms were tested and validated on four real-world point cloud datasets to solve two generative modeling problems, namely, engineering design optimization and facility location optimization. It was observed that the proposed Bayesian neighborhood definition outperformed particle swarm and uniform sampling by 34% and 27%, respectively. The proposed SVM-based linear feature detection outperformed k-means and spectral clustering by 56% and 9%, respectively. Finally, the NSGA II algorithm combined with the stochastic MCDM produced diverse “top four” solutions based on project-specific criteria. The results indicate promise for future utilization of the framework to produce training datasets for generative adversarial networks that generate new designs based only on stakeholder requirements

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    State of the Art in Face Recognition

    Get PDF
    Notwithstanding the tremendous effort to solve the face recognition problem, it is not possible yet to design a face recognition system with a potential close to human performance. New computer vision and pattern recognition approaches need to be investigated. Even new knowledge and perspectives from different fields like, psychology and neuroscience must be incorporated into the current field of face recognition to design a robust face recognition system. Indeed, many more efforts are required to end up with a human like face recognition system. This book tries to make an effort to reduce the gap between the previous face recognition research state and the future state

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways
    corecore