40,113 research outputs found

    Storage and Search in Dynamic Peer-to-Peer Networks

    Full text link
    We study robust and efficient distributed algorithms for searching, storing, and maintaining data in dynamic Peer-to-Peer (P2P) networks. P2P networks are highly dynamic networks that experience heavy node churn (i.e., nodes join and leave the network continuously over time). Our goal is to guarantee, despite high node churn rate, that a large number of nodes in the network can store, retrieve, and maintain a large number of data items. Our main contributions are fast randomized distributed algorithms that guarantee the above with high probability (whp) even under high adversarial churn: 1. A randomized distributed search algorithm that (whp) guarantees that searches from as many as no(n)n - o(n) nodes (nn is the stable network size) succeed in O(logn){O}(\log n)-rounds despite O(n/log1+δn){O}(n/\log^{1+\delta} n) churn, for any small constant δ>0\delta > 0, per round. We assume that the churn is controlled by an oblivious adversary (that has complete knowledge and control of what nodes join and leave and at what time, but is oblivious to the random choices made by the algorithm). 2. A storage and maintenance algorithm that guarantees (whp) data items can be efficiently stored (with only Θ(logn)\Theta(\log{n}) copies of each data item) and maintained in a dynamic P2P network with churn rate up to O(n/log1+δn){O}(n/\log^{1+\delta} n) per round. Our search algorithm together with our storage and maintenance algorithm guarantees that as many as no(n)n - o(n) nodes can efficiently store, maintain, and search even under O(n/log1+δn){O}(n/\log^{1+\delta} n) churn per round. Our algorithms require only polylogarithmic in nn bits to be processed and sent (per round) by each node. To the best of our knowledge, our algorithms are the first-known, fully-distributed storage and search algorithms that provably work under highly dynamic settings (i.e., high churn rates per step).Comment: to appear at SPAA 201

    Estimating and Sampling Graphs with Multidimensional Random Walks

    Full text link
    Estimating characteristics of large graphs via sampling is a vital part of the study of complex networks. Current sampling methods such as (independent) random vertex and random walks are useful but have drawbacks. Random vertex sampling may require too many resources (time, bandwidth, or money). Random walks, which normally require fewer resources per sample, can suffer from large estimation errors in the presence of disconnected or loosely connected graphs. In this work we propose a new mm-dimensional random walk that uses mm dependent random walkers. We show that the proposed sampling method, which we call Frontier sampling, exhibits all of the nice sampling properties of a regular random walk. At the same time, our simulations over large real world graphs show that, in the presence of disconnected or loosely connected components, Frontier sampling exhibits lower estimation errors than regular random walks. We also show that Frontier sampling is more suitable than random vertex sampling to sample the tail of the degree distribution of the graph

    EGOIST: Overlay Routing Using Selfish Neighbor Selection

    Full text link
    A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CISE/CNS 0524477, CNS/NeTS 0520166, CNS/ITR 0205294; CISE/EIA RI 0202067; CAREER 04446522); European Commission (RIDS-011923

    Expansion properties of a random regular graph after random vertex deletions

    Get PDF
    We investigate the following vertex percolation process. Starting with a random regular graph of constant degree, delete each vertex independently with probability p, where p=n^{-alpha} and alpha=alpha(n) is bounded away from 0. We show that a.a.s. the resulting graph has a connected component of size n-o(n) which is an expander, and all other components are trees of bounded size. Sharper results are obtained with extra conditions on alpha. These results have an application to the cost of repairing a certain peer-to-peer network after random failures of nodes.Comment: 14 page

    Towards Unbiased BFS Sampling

    Full text link
    Breadth First Search (BFS) is a widely used approach for sampling large unknown Internet topologies. Its main advantage over random walks and other exploration techniques is that a BFS sample is a plausible graph on its own, and therefore we can study its topological characteristics. However, it has been empirically observed that incomplete BFS is biased toward high-degree nodes, which may strongly affect the measurements. In this paper, we first analytically quantify the degree bias of BFS sampling. In particular, we calculate the node degree distribution expected to be observed by BFS as a function of the fraction f of covered nodes, in a random graph RG(pk) with an arbitrary degree distribution pk. We also show that, for RG(pk), all commonly used graph traversal techniques (BFS, DFS, Forest Fire, Snowball Sampling, RDS) suffer from exactly the same bias. Next, based on our theoretical analysis, we propose a practical BFS-bias correction procedure. It takes as input a collected BFS sample together with its fraction f. Even though RG(pk) does not capture many graph properties common in real-life graphs (such as assortativity), our RG(pk)-based correction technique performs well on a broad range of Internet topologies and on two large BFS samples of Facebook and Orkut networks. Finally, we consider and evaluate a family of alternative correction procedures, and demonstrate that, although they are unbiased for an arbitrary topology, their large variance makes them far less effective than the RG(pk)-based technique.Comment: BFS, RDS, graph traversal, sampling bias correctio

    Making Markov chains less lazy

    Full text link
    The mixing time of an ergodic, reversible Markov chain can be bounded in terms of the eigenvalues of the chain: specifically, the second-largest eigenvalue and the smallest eigenvalue. It has become standard to focus only on the second-largest eigenvalue, by making the Markov chain "lazy". (A lazy chain does nothing at each step with probability at least 1/2, and has only nonnegative eigenvalues.) An alternative approach to bounding the smallest eigenvalue was given by Diaconis and Stroock and Diaconis and Saloff-Coste. We give examples to show that using this approach it can be quite easy to obtain a bound on the smallest eigenvalue of a combinatorial Markov chain which is several orders of magnitude below the best-known bound on the second-largest eigenvalue.Comment: 8 page
    corecore