1,486 research outputs found

    Sampling Frequency Evaluation on Recurrent Neural Networks Architectures for IoT Real-time Fall Detection Devices

    Get PDF
    Falls are one of the most frequent causes of injuries in elderly people. Wearable Fall Detection Systems provided a ubiquitous tool for monitoring and alert when these events happen. Recurrent Neural Networks (RNN) are algorithms that demonstrates a great accuracy in some problems analyzing sequential inputs, such as temporal signal values. However, their computational complexity are an obstacle for the implementation in IoT devices. This work shows a performance analysis of a set of RNN architectures when trained with data obtained using different sampling frequencies. These architectures were trained to detect both fall and fall hazards by using accelerometers and were tested with 10-fold cross validation, using the F1-score metric. The results obtained show that sampling with a frequency of 25Hz does not affect the effectiveness, based on the F1-score, which implies a substantial increase in the performance in terms of computational cost. The architectures with two RNN layers and without a first dense layer had slightly better results than the smallest architectures. In future works, the best architectures obtained will be integrated in an IoT solution to determine the effectiveness empirically.Ministerio de Economía y Competitividad TEC2016-77785-

    Wearable Fall Detector Using Recurrent Neural Networks

    Get PDF
    Falls have become a relevant public health issue due to their high prevalence and negative effects in elderly people. Wearable fall detector devices allow the implementation of continuous and ubiquitous monitoring systems. The effectiveness for analyzing temporal signals with low energy consumption is one of the most relevant characteristics of these devices. Recurrent neural networks (RNNs) have demonstrated a great accuracy in some problems that require analyzing sequential inputs. However, getting appropriate response times in low power microcontrollers remains a difficult task due to their limited hardware resources. This work shows a feasibility study about using RNN-based deep learning models to detect both falls and falls’ risks in real time using accelerometer signals. The effectiveness of four different architectures was analyzed using the SisFall dataset at different frequencies. The resulting models were integrated into two different embedded systems to analyze the execution times and changes in the model effectiveness. Finally, a study of power consumption was carried out. A sensitivity of 88.2% and a specificity of 96.4% was obtained. The simplest models reached inference times lower than 34 ms, which implies the capability to detect fall events in real-time with high energy efficiency. This suggests that RNN models provide an effective method that can be implemented in low power microcontrollers for the creation of autonomous wearable fall detection systems in real-time

    Deep Predictive Coding Neural Network for RF Anomaly Detection in Wireless Networks

    Full text link
    Intrusion detection has become one of the most critical tasks in a wireless network to prevent service outages that can take long to fix. The sheer variety of anomalous events necessitates adopting cognitive anomaly detection methods instead of the traditional signature-based detection techniques. This paper proposes an anomaly detection methodology for wireless systems that is based on monitoring and analyzing radio frequency (RF) spectrum activities. Our detection technique leverages an existing solution for the video prediction problem, and uses it on image sequences generated from monitoring the wireless spectrum. The deep predictive coding network is trained with images corresponding to the normal behavior of the system, and whenever there is an anomaly, its detection is triggered by the deviation between the actual and predicted behavior. For our analysis, we use the images generated from the time-frequency spectrograms and spectral correlation functions of the received RF signal. We test our technique on a dataset which contains anomalies such as jamming, chirping of transmitters, spectrum hijacking, and node failure, and evaluate its performance using standard classifier metrics: detection ratio, and false alarm rate. Simulation results demonstrate that the proposed methodology effectively detects many unforeseen anomalous events in real time. We discuss the applications, which encompass industrial IoT, autonomous vehicle control and mission-critical communications services.Comment: 7 pages, 7 figures, Communications Workshop ICC'1

    Experimentation and Analysis of Ensemble Deep Learning in IoT Applications

    Get PDF
    This paper presents an experimental study of Ensemble Deep Learning (DL) techniques for the analysis of time series data on IoT devices. We have shown in our earlier work that DL demonstrates superior performance compared to traditional machine learning techniques on fall detection applications due to the fact that important features in time series data can be learned and need not be determined manually by the domain expert. However, DL networks generally require large datasets for training. In the health care domain, such as the real-time smartwatch-based fall detection, there are no publicly available large annotated datasets that can be used for training, due to the nature of the problem (i.e. a fall is not a common event). Moreover, fall data is also inherently noisy since motions generated by the wrist-worn smartwatch can be mistaken for a fall. This paper explores combing DL (Recurrent Neural Network) with ensemble techniques (Stacking and AdaBoosting) using a fall detection application as a case study. We conducted a series of experiments using two different datasets of simulated falls for training various ensemble models. Our results show that an ensemble of deep learning models combined by the stacking ensemble technique, outperforms a single deep learning model trained on the same data samples, and thus, may be better suited for small-size datasets

    Network Intrusion Detection Using Autoencode Neural Network

    Get PDF
    In today's interconnected digital landscape, safeguarding computer networks against unauthorized access and cyber threats is of paramount importance. NIDS play a crucial role in identifying and mitigating potential security breaches. This research paper explores the application of autoencoder neural networks, a subset of deep learning techniques, in the realm of Network Intrusion Detection.Autoencoder neural networks are known for their ability to learn and represent data in a compressed, low-dimensional form. This study investigates their potential in modeling network traffic patterns and identifying anomalous activities. By training autoencoder networks on both normal and malicious network traffic data, we aim to create effective intrusion detection models that can distinguish between benign and malicious network behavior.The paper provides an in-depth analysis of the architecture and training methodologies of autoencoder neural networks for intrusion detection. It also explores various data preprocessing techniques and feature engineering approaches to enhance the model's performance. Additionally, the research evaluates the robustness and scalability of autoencoder-based NIDS in real-world network environments. Furthermore, ethical considerations in network intrusion detection, including privacy concerns and false positive rates, are discussed. It addresses the need for a balanced approach that ensures network security while respecting user privacy and minimizing disruptions. operation. This approach compresses the majority samples & increases the minority sample count in tough samples so that the IDS can achieve greater classification accuracy

    Lower-Limb Falling Detection System Using Gated Recurrent Neural Networks

    Get PDF
    Accidental falls are one of the most common causes of premature disability and mortality related to unnatural causes. This affects mainly the elderly population. With the current aging of the population, the rate of accidental falls increases. Computer systems for gait analysis and fast assistance in ubiquitous environments can be effective tools to prevent these accidents. In this article we present the advances in the creation of an intelligent device for detecting falls and risk situations based on accelerometer signals registered on the user’s ankle. The proposed method makes use of Deep Learning techniques, specifically Gated Recurrent Neural Networks. The results show that the proposed model is a viable alternative to detect falls and fall risk, which can be implemented in low performance devices for greater autonomy, lower cost and comfortable portability. These results open the possibility of combining fall detection with a biomechanical analysis system to identify gait deficiencies and their relation with falls

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers
    corecore