44,415 research outputs found

    Approximating the Regular Graphic TSP in near linear time

    Get PDF
    We present a randomized approximation algorithm for computing traveling salesperson tours in undirected regular graphs. Given an nn-vertex, kk-regular graph, the algorithm computes a tour of length at most (1+7lnkO(1))n\left(1+\frac{7}{\ln k-O(1)}\right)n, with high probability, in O(nklogk)O(nk \log k) time. This improves upon a recent result by Vishnoi (\cite{Vishnoi12}, FOCS 2012) for the same problem, in terms of both approximation factor, and running time. The key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a cycle cover with O(n/logk)O(n/\log k) cycles with high probability, in near linear time. Additionally, we also give a deterministic 32+O(1k)\frac{3}{2}+O\left(\frac{1}{\sqrt{k}}\right) factor approximation algorithm running in time O(nk)O(nk).Comment: 12 page

    A Simple FPTAS for Counting Edge Covers

    Full text link
    An edge cover of a graph is a set of edges such that every vertex has at least an adjacent edge in it. Previously, approximation algorithm for counting edge covers is only known for 3 regular graphs and it is randomized. We design a very simple deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of edge covers for any graph. Our main technique is correlation decay, which is a powerful tool to design FPTAS for counting problems. In order to get FPTAS for general graphs without degree bound, we make use of a stronger notion called computationally efficient correlation decay, which is introduced in [Li, Lu, Yin SODA 2012].Comment: To appear in SODA 201

    Finding long cycles in graphs

    Full text link
    We analyze the problem of discovering long cycles inside a graph. We propose and test two algorithms for this task. The first one is based on recent advances in statistical mechanics and relies on a message passing procedure. The second follows a more standard Monte Carlo Markov Chain strategy. Special attention is devoted to Hamiltonian cycles of (non-regular) random graphs of minimal connectivity equal to three

    The number of matchings in random graphs

    Full text link
    We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdos-Renyi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erdos-Renyi random graph ensembles.Comment: 17 pages, 6 figures, to be published in Journal of Statistical Mechanic

    Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity

    Full text link
    Given an nn-length input signal \mbf{x}, it is well known that its Discrete Fourier Transform (DFT), \mbf{X}, can be computed in O(nlogn)O(n \log n) complexity using a Fast Fourier Transform (FFT). If the spectrum \mbf{X} is exactly kk-sparse (where k<<nk<<n), can we do better? We show that asymptotically in kk and nn, when kk is sub-linear in nn (precisely, knδk \propto n^{\delta} where 0<δ<10 < \delta <1), and the support of the non-zero DFT coefficients is uniformly random, we can exploit this sparsity in two fundamental ways (i) {\bf {sample complexity}}: we need only M=rkM=rk deterministically chosen samples of the input signal \mbf{x} (where r<4r < 4 when 0<δ<0.990 < \delta < 0.99); and (ii) {\bf {computational complexity}}: we can reliably compute the DFT \mbf{X} using O(klogk)O(k \log k) operations, where the constants in the big Oh are small and are related to the constants involved in computing a small number of DFTs of length approximately equal to the sparsity parameter kk. Our algorithm succeeds with high probability, with the probability of failure vanishing to zero asymptotically in the number of samples acquired, MM.Comment: 36 pages, 15 figures. To be presented at ISIT-2013, Istanbul Turke
    corecore