171 research outputs found

    Optimierung von Brennstoffzellen-Hybridfahrzeugen

    Get PDF
    The limited fossil fuel resources and the environmental concerns associated with burning those fossil fuels lie behind the increasing interest in hydrogen as a clean and sustainable alternative to fossil fuels, and in fuel cells as a clean converter of hydrogen into electrical energy especially in the transportation sector. Fuel cell hybrid vehicles (FCHVs) are characterized by the use of a fuel cell system (FCS) as the main power source and a battery, a supercapacitor or both as an energy storage system (ESS). Hybridizing the FCS with an ESS significantly improves the hydrogen economy, helps downsize the FCS, and resolves the issues related the long start-up time and slow dynamics of the FCS. The existence of multiple power sources in the powertrain gives rise to two important questions: How to coordinate the power contribution of the sources (i.e., power management strategy (PMS)), and how to size these sources in order to exploit the advantages of hybridization. The goal of this thesis is to develop a comprehensive framework for the optimization of PMS and size of FCHV powertrains. Depending on the type of ESS, three topologies are considered: fuel cell/ battery, fuel cell/ supercapacitor, and fuel cell/ battery/ supercapacitor. The PMS optimization is investigated on two levels; i.e., the vehicle level by simulation and the developed optimization algorithms are then validated on a small-scale test bench. When the driving cycle is known a priori, the off-line optimal PMS that globally minimizes the hydrogen consumption is calculated by two algorithms, namely, Dynamic Programming (DP) and Pontryagin’s Minimum Principle (PMP), and the two algorithms are compared. It has been found that PMP can be a superior approach for off-line optimization since it requires negligible computation resources without sacrificing the global optimality. The off-line optimal strategy is not real-time capable; hence, real-time strategies are designed and optimized while using the off-line optimal PMS as a benchmark. Special emphasize is put on the inclusion of multiple driving cycles, of different nature, in the optimization of the real-time PMS to increase its robustness. The sizing of the power sources of fuel cell/ battery and fuel cell/ supercapacitor hybrids considers hydrogen consumption and powertrain cost as two objectives and takes into account the drivability constraints such as top speed, gradeablity and acceleration time. The interesting designs (i.e., FCS size and ESS size), which represent the most efficient trade-off between the objectives, are then extracted and analyzed. The effect of battery aging on the optimal powertrain size is investigated by an Ampere-hour throughput model. It has been found that the battery aging leads to less efficient powertrain designs and the supercapacitor can become a more efficient option in comparison to batteries of poor lifetime.Die begrenzten fossilen Ressourcen und die Umweltsorgen, die mit der Verbrennung dieser fossilen Brennstoffe verbunden sind, stecken hinter dem steigenden Interesse am Wasserstoff als sauberer und nachhaltiger Alternative, und an Brennstoffzellen als sauberen Wandlern des Wasserstoffs in elektrische Energie, vor allem im Verkehrssektor. Ein Brennstoffzellen-Hybridfahrzeug (FCHV) verwendet ein Brennstoffzellensystem (FCS) als eine Hauptenergiequelle und eine Batterie, einen Superkondensator oder beide als Energiespeichersystem (ESS). Hybridisierung des FCS mit einem ESS verringert erheblich den Wasserstoffverbrauch, hilft das FCS zu verkleinern, und behebt das Problem der langen Anlaufzeit und der langsamen Dynamik des FCS. Die Existenz von mehreren Stromquellen im Antriebsstrang wirft zwei wichtige Fragen auf: Wie ist die Leistungsanforderung des Fahrzeugs zwischen den Quellen zu verteilen (d.h. Power-Management-Strategie (PMS)) und wie sind diese Quellen zu dimensionieren, um die Hybridisierung auszunutzen. Das Ziel dieser Arbeit ist es, einen umfassenden Rahmen für die Optimierung der PMS und Dimensionierung der Brennstoffzellen-basierten hybriden Antriebsstränge zu entwickeln. Abhängig von der Art des ESS werden drei Topologien berücksichtigt: Brennstoffzelle/ Batterie, Brennstoffzelle/ Superkondensator und Brennstoffzelle/ Batterie/ Superkondensator. Die PMS-Optimierung wird auf zwei Ebenen untersucht, und zwar die Fahrzeugebene durch Simulation und die Prüfstandsebene, worauf die entwickelten Optimierungsalgorithmen experimentell validiert werden. Wenn der Lastzyklus im Voraus bekannt ist, kann die offline optimale PMS, die den Wasserstoffverbrauch global minimiert, berechnet werden. Dazu werden die zwei Algorithmen, Dynamische Programmierung (DP) und Pontryagins Minimumprinzip (PMP), verglichen. Es wurde herausgefunden, dass das PMP ein überlegener Ansatz für die offline-Optimierung sein kann, da es viel weniger Rechenressourcen braucht, ohne die globale Optimalität zu opfern. Die offline optimale Strategie ist nicht echtzeitfähig, und deshalb werden Echtzeit-Strategien entworfen und optimiert, indem die offline optimale PMS als Maßstab verwendet wird. Beim Designen der echtzeitfähigen Strategien werden mehrere Fahrzyklen unterschiedlicher Natur beachtet, um die Robustheit der Strategien zu erhöhen. Die Dimensionierung der Stromquellen der Brennstoffzelle/ Batterie und Brennstoffzelle/ Superkondensator Hybriden betrachtet den Wasserstoffverbrauch und die Kosten des Antriebsstrangs als zwei Ziele. Es wird dabei die Fahrbarkeit, d.h. Höchstgeschwindigkeit, Steigfähigkeit und Beschleunigungszeit, berücksichtigt. Die interessanten Konfigurationen (FCS-Größe und ESS-Größe), die den effizientesten Kompromiss zwischen den Zielen darstellen, werden dann herausgefunden und analysiert. Die Wirkung der Batteriealterung auf die optimale Antriebsstrang-Größe wird durch ein Ampere-Stunden-Durchsatzmodell untersucht. Es wurde herausgefunden, dass die Batterie-Alterung weniger effiziente Antriebsstrang-Konfigurationen ergibt, und dass der Superkondensator eine effizientere Alternative zur Batterie sein kann, wenn er mit Batterien von schlechter Lebensdauer verglichen wird

    INTEGRATED COMPUTER-AIDED DESIGN, EXPERIMENTATION, AND OPTIMIZATION APPROACH FOR PEROVSKITES AND PETROLEUM PACKAGING PROCESSES

    Get PDF
    According to the World Economic Forum report, the U.S. currently has an energy efficiency of just 30%, thus illustrating the potential scope and need for efficiency enhancement and waste minimization. In the U.S. energy sector, petroleum and solar energy are the two key pillars that have the potential to create research opportunities for transition to a cleaner, greener, and sustainable future. In this research endeavor, the focus is on two pivotal areas: (i) Computer-aided perovskite solar cell synthesis; and (ii) Optimization of flow processes through multiproduct petroleum pipelines. In the area of perovskite synthesis, the emphasis is on the enhancement of structural stability, lower costs, and sustainability. Utilizing modeling and optimization methods for computer-aided molecular design (CAMD), efficient, sustainable, less toxic, and economically viable alternatives to conventional lead-based perovskites are obtained. In the second area of optimization of flow processes through multiproduct petroleum pipelines, an actual industrial-scale operation for packaging multiple lube-oil blends is studied. Through an integrated approach of experimental characterization, process design, procedural improvements, testing protocols, control mechanisms, mathematical modeling, and optimization, the limitations of traditional packaging operations are identified, and innovative operational paradigms and strategies are developed by incorporating methods from process systems engineering and data-driven approaches

    A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework

    Get PDF
    This paper proposes a novel control framework and the corresponding strategy for power sources management in connected plug-in hybrid electric vehicles (cPHEVs). A mobile edge computation (MEC) based control framework is developed first, evolving the conventional on-board vehicle control unit (VCU) into the hierarchically asynchronous controller that is partly located in cloud. Elaborately contrastive analysis on the performance of processing capacity, communication frequency and communication delay manifests dramatic potential of the proposed framework in sustaining development of the cooperative control strategy for cPHEVs. On the basis of MEC based control framework, a specific cooperative strategy is constructed. The novel strategy accomplishes energy flow management between different power sources with incorporation of the active energy consumption plan and adaptive energy consumption management. The method to generate the reference battery state-of-charge (SOC) trajectories in energy consumption plan stage is emphatically investigated, fast outputting reference trajectories that are tightly close to results by global optimization methods. The estimation of distribution algorithm (EDA) is employed to output reference control policies under the specific terminal conditions assigned via the machine learning based method. Finally, simulation results highlight that the novel strategy attains superior performance in real-time application that is close to the offline global optimization solutions

    Mathematical Optimization Techniques

    Get PDF
    The papers collected in this volume were presented at the Symposium on Mathematical Optimization Techniques held in the Santa Monica Civic Auditorium, Santa Monica, California, on October 18-20, 1960. The objective of the symposium was to bring together, for the purpose of mutual education, mathematicians, scientists, and engineers interested in modern optimization techniques. Some 250 persons attended. The techniques discussed included recent developments in linear, integer, convex, and dynamic programming as well as the variational processes surrounding optimal guidance, flight trajectories, statistical decisions, structural configurations, and adaptive control systems. The symposium was sponsored jointly by the University of California, with assistance from the National Science Foundation, the Office of Naval Research, the National Aeronautics and Space Administration, and The RAND Corporation, through Air Force Project RAND

    Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective

    Get PDF
    Plug-in hybrid electric vehicles (PHEVs) offer an immediate solution for emissions reduction and fuel displacement within the current infrastructure. Targeting PHEV powertrain optimization, a plethora of energy management strategies (EMSs) have been proposed. Although these algorithms present various levels of complexity and accuracy, they find a limitation in terms of availability of future trip information, which generally prevents exploitation of the full PHEV potential in real-life cycles. This paper presents a comprehensive analysis of EMS evolution toward blended mode (BM) and optimal control, providing a thorough survey of the latest progress in optimization-based algorithms. This is performed in the context of connected vehicles and highlights certain contributions that intelligent transportation systems (ITSs), traffic information, and cloud computing can provide to enhance PHEV energy management. The study is culminated with an analysis of future trends in terms of optimization algorithm development, optimization criteria, PHEV integration in the smart grid, and vehicles as part of the fleet

    Bandwidth Based Methodology for Designing a Hybrid Energy Storage System for a Series Hybrid Electric Vehicle with Limited All Electric Mode

    Get PDF
    The cost and fuel economy of hybrid electrical vehicles (HEVs) are significantly dependent on the power-train energy storage system (ESS). A series HEV with a minimal all-electric mode (AEM) permits minimizing the size and cost of the ESS. This manuscript, pursuing the minimal size tactic, introduces a bandwidth based methodology for designing an efficient ESS. First, for a mid-size reference vehicle, a parametric study is carried out over various minimal-size ESSs, both hybrid (HESS) and non-hybrid (ESS), for finding the highest fuel economy. The results show that a specific type of high power battery with 4.5 kWh capacity can be selected as the winning candidate to study for further minimization. In a second study, following the twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance, a sports car class Series-HEV (SHEV) was considered as a potential application which requires even more ESS minimization. The challenge with this vehicle is to reduce the ESS size compared to 4.5 kWh, because the available space allocation is only one fourth of the allowed battery size in the mid-size study by volume. Therefore, an advanced bandwidth-based controller is developed that allows a hybridized Subaru BRZ model to be realized with a light ESS. The result allows a SHEV to be realized with 1.13 kWh ESS capacity. In a third study, the objective is to find optimum SHEV designs with minimal AEM assumption which cover the design space between the fuel economies in the mid-size car study and the sports car study. Maximizing FE while minimizing ESS cost is more aligned with customer acceptance in the current state of market. The techniques applied to manage the power flow between energy sources of the power-train significantly affect the results of this optimization. A Pareto Frontier, including ESS cost and FE, for a SHEV with limited AEM, is introduced using an advanced bandwidth-based control strategy teamed up with duty ratio control. This controller allows the series hybrid’s advantage of tightly managing engine efficiency to be extended to lighter ESS, as compared to the size of the ESS in available products in the market

    Online Control of Automotive systems for improved Real-World Performance

    Full text link
    [ES] La necesidad de mejorar el consumo de combustible y las emisiones de los sistemas propulsivos de automoción en condiciones reales de conducción es la base de esta tesis. Para ello, se exploran dos ejes: En primer lugar, el control de los sistemas de propulsión. El estado del arte de control en los sistemas propulsivos de automoción se basa en gran medida en el uso de técnicas de optimización que buscan las leyes de control que minimizan una función de coste en un conjunto de condiciones de operación denidas a priori. Estas leyes se almacenan en las ECUs de producción en forma de mapas de calibración de los diferentes actuadores del motor. Las incertidumbres asociadas al conjunto limitado de condiciones en el proceso de calibración dan lugar a un funcionamiento subóptimo del sistema de propulsión en condiciones de conducción real. Por lo tanto, en este trabajo se proponen métodos de control adaptativo que optimicen la gestión de la planta propulsiva a las condiciones esperadas de funcionamiento para un usuario y un caso determinado en lugar de a un conjunto genérico de condiciones. El segundo eje se reere a optimizar, en lugar de los parámetros de control del sistema propulsivo, la demanda de potencia de este, introduciendo al propio conductor en el bucle de control, sugiriéndole las acciones a tomar. En particular, este segundo eje se reere al control de la velocidad del vehículo (conocido popularmente como Eco-Driving en la literatura) en condiciones reales de conducción. Se proponen sistemas de aviso en tiempo real al conductor acerca de la velocidad óptima para minimizar el consumo del vehículo. Los métodos de control desarrollados para cada aplicación se describen en detalle en la tesis y se muestran ensayos experimentales de validación en los casos de estudio diseñados. Ambos ejes representan un problema de control óptimo, denido por un sistema dinámico, unas restricciones a cumplir y un coste a minimizar, en este sentido las herramientas desarrolladas en la tesis son comunes a los dos ejes: Un modelo de vehículo, una herramienta de predicción del ciclo de conducción y métodos de control óptimo (Programación Dinámica, Principio Mínimo de Pontryagin y Estrategia de Consumo Equivalente Mínimo). Dependiendo de la aplicación, los métodos desarrollados se implementaron en varios entornos experimentales: un motor térmico en sala de ensayos simulando el resto del vehículo, incluyendo el resto del sistema de propulsión híbrido y en un vehículo real. Los resultados muestran mejoras signicativas en el rendimiento del sistema de propulsión en términos de ahorro de combustible y emisiones en comparación con los métodos empleados en el estado del arte actual.[CA] La necessitat de millorar el consum de combustible i les emissions dels sistemes propulsius d'automoció en condicions reals de conducció és la base d'aquesta tesi. Per a això, s'exploren dos eixos: En primer lloc, el control dels sistemes de propulsió. L'estat de l'art de control en els sistemes propulsius d'automoció es basa en gran manera en l'ús de tècniques d'optimització que busquen les lleis de control que minimitzen una funció de cost en un conjunt de condicions d'operació denides a priori. Aquestes lleis s'emmagatzemen en les Ecus de producció en forma de mapes de calibratge dels diferents actuadors del motor. Les incerteses associades al conjunt limitat de condicions en el procés de calibratge donen lloc a un funcionament subòptim del sistema de propulsió en condicions de conducció real. Per tant, en aquest treball es proposen mètodes de control adaptatiu que optimitzen la gestió de la planta propulsiva a les condicions esperades de funcionament per a un usuari i un cas determinat en lloc d'un conjunt genèric de condicions. El segon eix es refereix a optimitzar, en lloc dels paràmetres de control del sistema propulsiu, la demanda de potència d'aquest, introduint al propi conductor en el bucle de control, suggerint-li les accions a prendre. En particular, aquest segon eix es refereix al control de la velocitat del vehicle (conegut popularment com Eco-*Driving en la literatura) en condicions reals de conducció. Es proposen sistemes d'avís en temps real al conductor sobre la velocitat òptima per a minimitzar el consum del vehicle. Els mètodes de control desenvolupats per a cada aplicació es descriuen detalladament en la tesi i es mostren assajos experimentals de validació en els casos d'estudi dissenyats. Tots dos eixos representen un problema de control òptim, denit per un sistema dinàmic, unes restriccions a complir i un cost a minimitzar, en aquest sentit les eines desenvolupades en la tesi són comunes als dos eixos: Un model de vehicle, una eina de predicció del cicle de conducció i mètodes de control òptim (Programació Dinàmica, Principi Mínim de *Pontryagin i Estratègia de Consum Equivalent Mínim). Depenent de l'aplicació, els mètodes desenvolupats es van implementar en diversos entorns experimentals: un motor tèrmic en sala d'assajos simulant la resta del vehicle, incloent la resta del sistema de propulsió híbrid i en un vehicle real. Els resultats mostren millores signicatives en el rendiment del sistema de propulsió en termes d'estalvi de combustible i emissions en comparació amb els mètodes emprats en l'estat de l'art actual.[EN] The need of improving the real-world fuel consumption and emission of automotive applications is the basis of this thesis. To this end, two verticals are explored: First is the online control of the powertrain systems. In state-of-the-art Optimal Control techniques (such as Dyanmic Programming, Pontryagins Minimum Principle, etc...) are extensively used to formulate the optimal control laws. These laws are stored in the production ECUs in the form of feedforward calibration maps. The unaccounted uncertainities related to the real-world during the powertrain calibration result in suboptimal operations of the powertrain in actual driving. Therefore, adaptive control methods are proposed in this work which, optimise the energy management of the conventional and the HEV powertrain control on real driving mission. The second vertical is regarding the vehicle speed control (popularly known as Eco-Driving in the literature) methods in real driving condition. In particular, speed advisory systems are proposed for real time application on a vehicle. The control methods developed for each application are described in details with their verication and validation on the designed case studies. Apart from the developed control methods, there are three tools that were developed and used at various stages of this thesis: A vehicle model, A driving cycle prediction tool and optimal control methods (dynamic programming, PMP and ECMS). Depending on the application, the developed methods were implemented on the Hardware-In-Loop Internal Combustion Engine testing setup or on a real vehicle. The results show signicant improvements in the performance of the powertrain in terms of fuel economy and emissions in comparison to the state-of-the-art methods.Pandey, V. (2021). Online Control of Automotive systems for improved Real-World Performance [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/173716TESI

    Optimization of Energy-Efficient Speed Profile for Electrified Vehicles

    Full text link
    This work presents a study of the energy-efficient operation of all-electric vehicles leveraging route information, such as road grade, to adjust the velocity trajectory Minimization of energy consumption is one of the main targets of research for both passenger vehicles in terms of economic benefit, and army vehicles in terms of mission success and decision making. The optimization of a speed profile is one of the tools used to achieve energy minimization and it can also help in the useful utilization of autonomy in vehicles. The optimization of speed profile is typically addressed as an Optimal Control Problem (OCP). The obstacle that disrupts the implementation of optimization is the heavy computational load that results from the number of state variables, control inputs, and discretization, i.e., the curse of dimensionality. In this work, Pontryagin's Maximum Principle (PMP) is applied to derive necessary conditions and to determine the possible discrete operating modes. The analysis shows that only five modes are required to achieve minimum energy consumption; full propulsion, cruising, coasting, full regeneration, and full braking. Then, the problem is reformulated and solved in the distance domain using Dynamic Programming to find the optimal speed profiles. Various simulation results are shown for a lightweight autonomous military vehicle. Army Programs use various drive cycles including time, speed, and grade, for testing and validating new vehicle systems and models. Among those cycles, two different drive conditions are studied: relatively flat, Convoy, and hilly terrain, Churchville B. For the Convoy cycle, the optimal speed cycle uses 21% less energy for the same trip duration or reduces the time by 14% with the same energy consumption while for the Churchville B cycle, it uses 24% less energy or provides 24% reduction in time. Furthermore, the sensitivity of energy consumption to regenerative-braking power limits and trip time is investigated. These studies provide important information that can be used in designing component size and scheduling operation to achieve the desired vehicle range. Lastly, the work provides parametric studies about the influence of the efficiency of an electric motor on performance including energy consumption and control modes.Master of Science in EngineeringAutomotive Systems Engineering, College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/146793/1/Hadi_Abbas_Thesis (1).pdfDescription of Hadi_Abbas_Thesis (1).pdf : Thesi

    Optimal Supervisory Control of Hybrid Vehicles

    Get PDF
    Hybrid vehicles (HV), comprising a conventional ICE-based powertrain and a secondary energy source, to be converted into mechanical power as well, represent a well-established alternative to substantially reduce both fuel consumption and tailpipe emissions of passenger cars. Several HV architectures are either being studied or already available on market, e.g. Mechanical, Electric, Hydraulic and Pneumatic Hybrid Vehicles. Among the others, Electric (HEV) and Mechanical (HSF-HV) parallel Hybrid configurations are examined throughout this Thesis. To fully exploit the HVs potential, an optimal choice of the hybrid components to be installed must be properly designed, while an effective Supervisory Control must be adopted to coordinate the way the different power sources are managed and how they interact. Real-time controllers can be derived starting from the obtained optimal benchmark results. However, the application of these powerful instruments require a simplified and yet reliable and accurate model of the hybrid vehicle system. This can be a complex task, especially when the complexity of the system grows, i.e. a HSF-HV system assessed in this Thesis. The first task of the following dissertation is to establish the optimal modeling approach for an innovative and promising mechanical hybrid vehicle architecture. It will be shown how the chosen modeling paradigm can affect the goodness and the amount of computational effort of the solution, using an optimization technique based on Dynamic Programming. The second goal concerns the control of pollutant emissions in a parallel Diesel-HEV. The emissions level obtained under real world driving conditions is substantially higher than the usual result obtained in a homologation cycle. For this reason, an on-line control strategy capable of guaranteeing the respect of the desired emissions level, while minimizing fuel consumption and avoiding excessive battery depletion is the target of the corresponding section of the Thesis
    corecore