203 research outputs found

    Perturbation Algorithms for Adversarial Online Learning

    Full text link
    Honors (Bachelor's)StatisticsUniversity of Michiganhttps://deepblue.lib.umich.edu/bitstream/2027.42/139668/1/zifanli.pd

    Temporal Aggregation and Structural Inference in Macroeconomics

    Get PDF
    This paper examines the quantitative importance of temporal aggregation bias in distorting parameter estimates and hypothesis tests. Our strategy is to consider two empirical examples in which temporal aggregation bias has the potential to account for results which are widely viewed as being anomalous from the perspective of particular economic models. Our first example investigates the possibility that temporal aggregation bias can lead to spurious Granger causality relationships. The quantitative importance of this possibility is examined in the context of Granger causal relations between the growth rates of money and various measures of aggregate output. Our second example investigates the possibility that temporal aggregation bias can account for the slow speeds of adjustment typically obtained with stock adjustment models. The quantitative importance of this possibility is examined in the context of a particular class of continuous and discrete time equilibriurn models of inventories and sales. The different models are compared on the basis of the behavioral implications of the estimated values of the structural parameters which we obtain and their overall statistical performance. The empirical results from both examples provide support for the view that temporal aggregation bias can be quantitatively important in the sense of Significantly distorting inference.

    The Computational Power of Optimization in Online Learning

    Full text link
    We consider the fundamental problem of prediction with expert advice where the experts are "optimizable": there is a black-box optimization oracle that can be used to compute, in constant time, the leading expert in retrospect at any point in time. In this setting, we give a novel online algorithm that attains vanishing regret with respect to NN experts in total O~(N)\widetilde{O}(\sqrt{N}) computation time. We also give a lower bound showing that this running time cannot be improved (up to log factors) in the oracle model, thereby exhibiting a quadratic speedup as compared to the standard, oracle-free setting where the required time for vanishing regret is Θ~(N)\widetilde{\Theta}(N). These results demonstrate an exponential gap between the power of optimization in online learning and its power in statistical learning: in the latter, an optimization oracle---i.e., an efficient empirical risk minimizer---allows to learn a finite hypothesis class of size NN in time O(logN)O(\log{N}). We also study the implications of our results to learning in repeated zero-sum games, in a setting where the players have access to oracles that compute, in constant time, their best-response to any mixed strategy of their opponent. We show that the runtime required for approximating the minimax value of the game in this setting is Θ~(N)\widetilde{\Theta}(\sqrt{N}), yielding again a quadratic improvement upon the oracle-free setting, where Θ~(N)\widetilde{\Theta}(N) is known to be tight

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v

    Many-agent Reinforcement Learning

    Get PDF
    Multi-agent reinforcement learning (RL) solves the problem of how each agent should behave optimally in a stochastic environment in which multiple agents are learning simultaneously. It is an interdisciplinary domain with a long history that lies in the joint area of psychology, control theory, game theory, reinforcement learning, and deep learning. Following the remarkable success of the AlphaGO series in single-agent RL, 2019 was a booming year that witnessed significant advances in multi-agent RL techniques; impressive breakthroughs have been made on developing AIs that outperform humans on many challenging tasks, especially multi-player video games. Nonetheless, one of the key challenges of multi-agent RL techniques is the scalability; it is still non-trivial to design efficient learning algorithms that can solve tasks including far more than two agents (N2N \gg 2), which I name by \emph{many-agent reinforcement learning} (MARL\footnote{I use the world of ``MARL" to denote multi-agent reinforcement learning with a particular focus on the cases of many agents; otherwise, it is denoted as ``Multi-Agent RL" by default.}) problems. In this thesis, I contribute to tackling MARL problems from four aspects. Firstly, I offer a self-contained overview of multi-agent RL techniques from a game-theoretical perspective. This overview fills the research gap that most of the existing work either fails to cover the recent advances since 2010 or does not pay adequate attention to game theory, which I believe is the cornerstone to solving many-agent learning problems. Secondly, I develop a tractable policy evaluation algorithm -- αα\alpha^\alpha-Rank -- in many-agent systems. The critical advantage of αα\alpha^\alpha-Rank is that it can compute the solution concept of α\alpha-Rank tractably in multi-player general-sum games with no need to store the entire pay-off matrix. This is in contrast to classic solution concepts such as Nash equilibrium which is known to be PPADPPAD-hard in even two-player cases. αα\alpha^\alpha-Rank allows us, for the first time, to practically conduct large-scale multi-agent evaluations. Thirdly, I introduce a scalable policy learning algorithm -- mean-field MARL -- in many-agent systems. The mean-field MARL method takes advantage of the mean-field approximation from physics, and it is the first provably convergent algorithm that tries to break the curse of dimensionality for MARL tasks. With the proposed algorithm, I report the first result of solving the Ising model and multi-agent battle games through a MARL approach. Fourthly, I investigate the many-agent learning problem in open-ended meta-games (i.e., the game of a game in the policy space). Specifically, I focus on modelling the behavioural diversity in meta-games, and developing algorithms that guarantee to enlarge diversity during training. The proposed metric based on determinantal point processes serves as the first mathematically rigorous definition for diversity. Importantly, the diversity-aware learning algorithms beat the existing state-of-the-art game solvers in terms of exploitability by a large margin. On top of the algorithmic developments, I also contribute two real-world applications of MARL techniques. Specifically, I demonstrate the great potential of applying MARL to study the emergent population dynamics in nature, and model diverse and realistic interactions in autonomous driving. Both applications embody the prospect that MARL techniques could achieve huge impacts in the real physical world, outside of purely video games
    corecore