2,796 research outputs found

    Learning from a Class Imbalanced Public Health Dataset: a Cost-based Comparison of Classifier Performance

    Get PDF
    Public health care systems routinely collect health-related data from the population. This data can be analyzed using data mining techniques to find novel, interesting patterns, which could help formulate effective public health policies and interventions. The occurrence of chronic illness is rare in the population and the effect of this class imbalance, on the performance of various classifiers was studied. The objective of this work is to identify the best classifiers for class imbalanced health datasets through a cost-based comparison of classifier performance. The popular, open-source data mining tool WEKA, was used to build a variety of core classifiers as well as classifier ensembles, to evaluate the classifiers’ performance. The unequal misclassification costs were represented in a cost matrix, and cost-benefit analysis was also performed.  In another experiment, various sampling methods such as under-sampling, over-sampling, and SMOTE was performed to balance the class distribution in the dataset, and the costs were compared. The Bayesian classifiers performed well with a high recall, low number of false negatives and were not affected by the class imbalance. Results confirm that total cost of Bayesian classifiers can be further reduced using cost-sensitive learning methods. Classifiers built using the random under-sampled dataset showed a dramatic drop in costs and high classification accuracy

    Bayesian network-based over-sampling method (BOSME) with application to indirect cost-sensitive learning

    Get PDF
    Traditional supervised learning algorithms do not satisfactorily solve the classification problem on imbalanced data sets, since they tend to assign the majority class, to the detriment of the minority class classification. In this paper, we introduce the Bayesian network-based over-sampling method (BOSME), which is a new over-sampling methodology based on Bayesian networks. Over-sampling methods handle imbalanced data by generating synthetic minority instances, with the benefit that classifiers learned from a more balanced data set have a better ability to predict the minority class. What makes BOSME different is that it relies on a new approach, generating artificial instances of the minority class following the probability distribution of a Bayesian network that is learned from the original minority classes by likelihood maximization. We compare BOSME with the benchmark synthetic minority over-sampling technique (SMOTE) through a series of experiments in the context of indirect cost-sensitive learning, with some state-of-the-art classifiers and various data sets, showing statistical evidence in favor of BOSME, with respect to the expected (misclassification) cost.The authors are supported by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, project ref. PGC2018-097848-B-I0

    Doctor of Philosophy

    Get PDF
    dissertationIn the current business world, data collection for business analysis is not difficult any more. The major concern faced by business managers is whether they can use data to build predictive models so as to provide accurate information for decision-making. Knowledge Discovery from Databases (KDD) provides us a guideline for collecting data through identifying knowledge inside data. As one of the KDD steps, the data mining method provides a systematic and intelligent approach to learning a large amount of data and is critical to the success of KDD. In the past several decades, many different data mining algorithms have been developed and can be categorized as classification, association rule, and clustering. These data mining algorithms have been demonstrated to be very effective in solving different business questions. Among these data mining types, classification is the most popular group and is widely used in all kinds of business areas. However, the exiting classification algorithm is designed to maximize the prediction accuracy given by the assumption of equal class distribution and equal error costs. This assumption seldom holds in the real world. Thus, it is necessary to extend the current classification so that it can deal with the data with the imbalanced distribution and unequal costs. In this dissertation, I propose an Iterative Cost-sensitive Naïve Bayes (ICSNB) method aimed at reducing overall misclassification cost regardless of class distribution. During each iteration, K nearest neighbors are identified and form a new training set, which is used to learn unsolved instances. Using the characteristics of the nearest neighbor method, I also develop a new under-sampling method to solve the imbalance problem in the second study. In the second study, I design a general method to deal with the imbalance problem and identify noisy instances from the data set to create a balanced data set for learning. Both of these two methods are validated using multiple real world data sets. The empirical results show the superior performance of my methods compared to some existing and popular methods

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    Theoretical and methodological advances in semi-supervised learning and the class-imbalance problem.

    Get PDF
    201 p.Este trabajo se centra en la generalización teórica y práctica de dos situaciones desafiantes y conocidas del campo del aprendizaje automático a problemas de clasificación en los cuales la suposición de tener una única clase binaria no se cumple.Aprendizaje semi-supervisado es una técnica que usa grandes cantidades de datos no etiquetados para, así, mejorar el rendimiento del aprendizaje supervisado cuando el conjunto de datos etiquetados es muy acotado. Concretamente, este trabajo contribuye con metodologías potentes y computacionalmente eficientes para aprender, de forma semi-supervisada, clasificadores para múltiples variables clase. También, se investigan, de forma teórica, los límites fundamentales del aprendizaje semi-supervisado en problemas multiclase.El problema de desbalanceo de clases aparece cuando las variables objetivo presentan una distribución de probabilidad lo suficientemente desbalanceada como para desvirtuar las soluciones propuestas por los algoritmos de aprendizaje supervisado tradicionales. En este proyecto, se propone un marco teórico para separar la desvirtuación producida por el desbalanceo de clases de otros factores que afectan a la precisión de los clasificadores. Este marco es usado principalmente para realizar una recomendación de métricas de evaluación de clasificadores en esta situación. Por último, también se propone una medida del grado de desbalanceo de clases en un conjunto de datos correlacionada con la pérdida de precisión ocasionada.Intelligent Systems Grou

    Theoretical and Methodological Advances in Semi-supervised Learning and the Class-Imbalance Problem

    Get PDF
    his paper focuses on the theoretical and practical generalization of two known and challenging situations from the field of machine learning to classification problems in which the assumption of having a single binary class is not fulfilled.semi-supervised learning is a technique that uses large amounts of unlabeled data to improve the performance of supervised learning when the labeled data set is very limited. Specifically, this work contributes with powerful and computationally efficient methodologies to learn, in a semi-supervised way, classifiers for multiple class variables. Also, the fundamental limits of semi-supervised learning in multi-class problems are investigated in a theoretical way. The problem of class unbalance appears when the target variables present a probability distribution unbalanced enough to distort the solutions proposed by the traditional supervised learning algorithms. In this project, a theoretical framework is proposed to separate the deviation produced by class unbalance from other factors that affect the accuracy of classifiers. This framework is mainly used to make a recommendation of classifier assessment metrics in this situation. Finally, a measure of the degree of class unbalance in a data set correlated with the loss of accuracy caused is also proposed
    • …
    corecore