47 research outputs found

    DPCM-based edge prediction for lossless screen content coding in HEVC

    Get PDF
    Screen content sequences are ubiquitous type of video data in numerous multimedia applications like video conferencing, remote education, and cloud gaming. These sequences are characterized for depicting a mix of computer generated graphics, text, and camera-captured material. Such a mix poses several challenges, as the content usually depicts multiple strong discontinuities, which are hard to encode using current techniques. Differential pulse code modulation (DPCM)-based intra-prediction has shown to improve coding efficiency for these sequences. In this paper we propose sample-based edge and angular prediction (SEAP), a collection of DPCM-based intra-prediction modes to improve lossless coding of screen content. SEAP is aimed at accurately predicting regions depicting not only camera-captured material, but also those depicting strong edges. It incorporates modes that allow selecting the best predictor for each pixel individually based on the characteristics of the causal neighborhood of the target pixel. We incorporate SEAP into HEVC intra-prediction. Evaluation results on various screen content sequences show the advantages of SEAP over other DPCM-based approaches, with bit-rate reductions of up to 19.56% compared to standardized RDPCM. When used in conjunction with the coding tools of the screen content coding extensions, SEAP provides bit-rate reductions of up to 8.63% compared to RDPCM

    DPCM-Based Edge Prediction for Lossless Screen Content Coding in HEVC

    Full text link

    Contributions to HEVC Prediction for Medical Image Compression

    Get PDF
    Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compression where either near-lossless or lossless coding is required. In this dissertation, two different approaches to improve lossless coding of volumetric medical images, such as Magnetic Resonance and Computed Tomography, were studied and implemented using the latest standard High Efficiency Video Encoder (HEVC). In a first approach, the use of geometric transformations to perform inter-slice prediction was investigated. For the second approach, a pixel-wise prediction technique, based on Least-Squares prediction, that exploits inter-slice redundancy was proposed to extend the current HEVC lossless tools. Experimental results show a bitrate reduction between 45% and 49%, when compared with DICOM recommended encoders, and 13.7% when compared with standard HEVC

    JOINT CODING OF MULTIMODAL BIOMEDICAL IMAGES US ING CONVOLUTIONAL NEURAL NETWORKS

    Get PDF
    The massive volume of data generated daily by the gathering of medical images with different modalities might be difficult to store in medical facilities and share through communication networks. To alleviate this issue, efficient compression methods must be implemented to reduce the amount of storage and transmission resources required in such applications. However, since the preservation of all image details is highly important in the medical context, the use of lossless image compression algorithms is of utmost importance. This thesis presents the research results on a lossless compression scheme designed to encode both computerized tomography (CT) and positron emission tomography (PET). Different techniques, such as image-to-image translation, intra prediction, and inter prediction are used. Redundancies between both image modalities are also investigated. To perform the image-to-image translation approach, we resort to lossless compression of the original CT data and apply a cross-modality image translation generative adversarial network to obtain an estimation of the corresponding PET. Two approaches were implemented and evaluated to determine a PET residue that will be compressed along with the original CT. In the first method, the residue resulting from the differences between the original PET and its estimation is encoded, whereas in the second method, the residue is obtained using encoders inter-prediction coding tools. Thus, in alternative to compressing two independent picture modalities, i.e., both images of the original PET-CT pair solely the CT is independently encoded alongside with the PET residue, in the proposed method. Along with the proposed pipeline, a post-processing optimization algorithm that modifies the estimated PET image by altering the contrast and rescaling the image is implemented to maximize the compression efficiency. Four different versions (subsets) of a publicly available PET-CT pair dataset were tested. The first proposed subset was used to demonstrate that the concept developed in this work is capable of surpassing the traditional compression schemes. The obtained results showed gains of up to 8.9% using the HEVC. On the other side, JPEG2k proved not to be the most suitable as it failed to obtain good results, having reached only -9.1% compression gain. For the remaining (more challenging) subsets, the results reveal that the proposed refined post-processing scheme attains, when compared to conventional compression methods, up 6.33% compression gain using HEVC, and 7.78% using VVC

    Optimum Implementation of Compound Compression of a Computer Screen for Real-Time Transmission in Low Network Bandwidth Environments

    Get PDF
    Remote working is becoming increasingly more prevalent in recent times. A large part of remote working involves sharing computer screens between servers and clients. The image content that is presented when sharing computer screens consists of both natural camera captured image data as well as computer generated graphics and text. The attributes of natural camera captured image data differ greatly to the attributes of computer generated image data. An image containing a mixture of both natural camera captured image and computer generated image data is known as a compound image. The research presented in this thesis focuses on the challenge of constructing a compound compression strategy to apply the ‘best fit’ compression algorithm for the mixed content found in a compound image. The research also involves analysis and classification of the types of data a given compound image may contain. While researching optimal types of compression, consideration is given to the computational overhead of a given algorithm because the research is being developed for real time systems such as cloud computing services, where latency has a detrimental impact on end user experience. The previous and current state of the art videos codec’s have been researched along many of the most current publishing’s from academia, to design and implement a novel approach to a low complexity compound compression algorithm that will be suitable for real time transmission. The compound compression algorithm will utilise a mixture of lossless and lossy compression algorithms with parameters that can be used to control the performance of the algorithm. An objective image quality assessment is needed to determine whether the proposed algorithm can produce an acceptable quality image after processing. Both traditional metrics such as Peak Signal to Noise Ratio will be used along with a new more modern approach specifically designed for compound images which is known as Structural Similarity Index will be used to define the quality of the decompressed Image. In finishing, the compression strategy will be tested on a set of generated compound images. Using open source software, the same images will be compressed with the previous and current state of the art video codec’s to compare the three main metrics, compression ratio, computational complexity and objective image quality

    Towards visualization and searching :a dual-purpose video coding approach

    Get PDF
    In modern video applications, the role of the decoded video is much more than filling a screen for visualization. To offer powerful video-enabled applications, it is increasingly critical not only to visualize the decoded video but also to provide efficient searching capabilities for similar content. Video surveillance and personal communication applications are critical examples of these dual visualization and searching requirements. However, current video coding solutions are strongly biased towards the visualization needs. In this context, the goal of this work is to propose a dual-purpose video coding solution targeting both visualization and searching needs by adopting a hybrid coding framework where the usual pixel-based coding approach is combined with a novel feature-based coding approach. In this novel dual-purpose video coding solution, some frames are coded using a set of keypoint matches, which not only allow decoding for visualization, but also provide the decoder valuable feature-related information, extracted at the encoder from the original frames, instrumental for efficient searching. The proposed solution is based on a flexible joint Lagrangian optimization framework where pixel-based and feature-based processing are combined to find the most appropriate trade-off between the visualization and searching performances. Extensive experimental results for the assessment of the proposed dual-purpose video coding solution under meaningful test conditions are presented. The results show the flexibility of the proposed coding solution to achieve different optimization trade-offs, notably competitive performance regarding the state-of-the-art HEVC standard both in terms of visualization and searching performance.Em modernas aplicações de vídeo, o papel do vídeo decodificado é muito mais que simplesmente preencher uma tela para visualização. Para oferecer aplicações mais poderosas por meio de sinais de vídeo,é cada vez mais crítico não apenas considerar a qualidade do conteúdo objetivando sua visualização, mas também possibilitar meios de realizar busca por conteúdos semelhantes. Requisitos de visualização e de busca são considerados, por exemplo, em modernas aplicações de vídeo vigilância e comunicações pessoais. No entanto, as atuais soluções de codificação de vídeo são fortemente voltadas aos requisitos de visualização. Nesse contexto, o objetivo deste trabalho é propor uma solução de codificação de vídeo de propósito duplo, objetivando tanto requisitos de visualização quanto de busca. Para isso, é proposto um arcabouço de codificação em que a abordagem usual de codificação de pixels é combinada com uma nova abordagem de codificação baseada em features visuais. Nessa solução, alguns quadros são codificados usando um conjunto de pares de keypoints casados, possibilitando não apenas visualização, mas também provendo ao decodificador valiosas informações de features visuais, extraídas no codificador a partir do conteúdo original, que são instrumentais em aplicações de busca. A solução proposta emprega um esquema flexível de otimização Lagrangiana onde o processamento baseado em pixel é combinado com o processamento baseado em features visuais objetivando encontrar um compromisso adequado entre os desempenhos de visualização e de busca. Os resultados experimentais mostram a flexibilidade da solução proposta em alcançar diferentes compromissos de otimização, nomeadamente desempenho competitivo em relação ao padrão HEVC tanto em termos de visualização quanto de busca

    Non-disruptive use of light fields in image and video processing

    Get PDF
    In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved.Im Zeitalter der computergestützten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal für fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestützten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollständige volumetrische Information einer Szene. Diese Technologie bietet dabei das größte Potenzial, immersive Erlebnisse zu mehr Realitätsnähe zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der Inkompatibilität derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen für 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die Kompatibilität zwischen Anwendungen und Geräten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken für eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollständige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen Ansätze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    Improving minimum rate predictors algorithm for compression of volumetric medical images

    Get PDF
    Medical imaging technologies are experiencing a growth in terms of usage and image resolution, namely in diagnostics systems that require a large set of images, like CT or MRI. Furthermore, legal restrictions impose that these scans must be archived for several years. These facts led to the increase of storage costs in medical image databases and institutions. Thus, a demand for more efficient compression tools, used for archiving and communication, is arising. Currently, the DICOM standard, that makes recommendations for medical communications and imaging compression, recommends lossless encoders such as JPEG, RLE, JPEG-LS and JPEG2000. However, none of these encoders include inter-slice prediction in their algorithms. This dissertation presents the research work on medical image compression, using the MRP encoder. MRP is one of the most efficient lossless image compression algorithm. Several processing techniques are proposed to adapt the input medical images to the encoder characteristics. Two of these techniques, namely changing the alignment of slices for compression and a pixel-wise difference predictor, increased the compression efficiency of MRP, by up to 27.9%. Inter-slice prediction support was also added to MRP, using uni and bi-directional techniques. Also, the pixel-wise difference predictor was added to the algorithm. Overall, the compression efficiency of MRP was improved by 46.1%. Thus, these techniques allow for compression ratio savings of 57.1%, compared to DICOM encoders, and 33.2%, compared to HEVC RExt Random Access. This makes MRP the most efficient of the encoders under study
    corecore