62,409 research outputs found

    Transportability without positivity: a synthesis of statistical and simulation modeling

    Full text link
    When estimating an effect of an action with a randomized or observational study, that study is often not a random sample of the desired target population. Instead, estimates from that study can be transported to the target population. However, transportability methods generally rely on a positivity assumption, such that all relevant covariate patterns in the target population are also observed in the study sample. Strict eligibility criteria, particularly in the context of randomized trials, may lead to violations of this assumption. Two common approaches to address positivity violations are restricting the target population and restricting the relevant covariate set. As neither of these restrictions are ideal, we instead propose a synthesis of statistical and simulation models to address positivity violations. We propose corresponding g-computation and inverse probability weighting estimators. The restriction and synthesis approaches to addressing positivity violations are contrasted with a simulation experiment and an illustrative example in the context of sexually transmitted infection testing uptake. In both cases, the proposed synthesis approach accurately addressed the original research question when paired with a thoughtfully selected simulation model. Neither of the restriction approaches were able to accurately address the motivating question. As public health decisions must often be made with imperfect target population information, model synthesis is a viable approach given a combination of empirical data and external information based on the best available knowledge

    Influences on the Uptake of and Engagement With Health and Well-Being Smartphone Apps: Systematic Review

    Get PDF
    Background: The public health impact of health and well-being digital interventions is dependent upon sufficient real-world uptake and engagement. Uptake is currently largely dependent on popularity indicators (eg, ranking and user ratings on app stores), which may not correspond with effectiveness, and rapid disengagement is common. Therefore, there is an urgent need to identify factors that influence uptake and engagement with health and well-being apps to inform new approaches that promote the effective use of such tools. Objective: This review aimed to understand what is known about influences on the uptake of and engagement with health and well-being smartphone apps among adults. Methods: We conducted a systematic review of quantitative, qualitative, and mixed methods studies. Studies conducted on adults were included if they focused on health and well-being smartphone apps reporting on uptake and engagement behavior. Studies identified through a systematic search in Medical Literature Analysis and Retrieval System Online, or MEDLARS Online (MEDLINE), EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsychINFO, Scopus, Cochrane library databases, DataBase systems and Logic Programming (DBLP), and Association for Computing Machinery (ACM) Digital library were screened, with a proportion screened independently by 2 authors. Data synthesis and interpretation were undertaken using a deductive iterative process. External validity checking was undertaken by an independent researcher. A narrative synthesis of the findings was structured around the components of the capability, opportunity, motivation, behavior change model and the theoretical domains framework (TDF). Results: Of the 7640 identified studies, 41 were included in the review. Factors related to uptake (U), engagement (E), or both (B) were identified. Under capability, the main factors identified were app literacy skills (B), app awareness (U), available user guidance (B), health information (E), statistical information on progress (E), well-designed reminders (E), features to reduce cognitive load (E), and self-monitoring features (E). Availability at low cost (U), positive tone, and personalization (E) were identified as physical opportunity factors, whereas recommendations for health and well-being apps (U), embedded health professional support (E), and social networking (E) possibilities were social opportunity factors. Finally, the motivation factors included positive feedback (E), available rewards (E), goal setting (E), and the perceived utility of the app (E). Conclusions: Across a wide range of populations and behaviors, 26 factors relating to capability, opportunity, and motivation appear to influence the uptake of and engagement with health and well-being smartphone apps. Our recommendations may help app developers, health app portal developers, and policy makers in the optimization of health and well-being apps

    Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts

    Get PDF
    This short overview summarises some of the basic considerations which should be undertaken when the Scherrer equation is applied to reflection widths in X-ray diffraction patterns of heterogeneous catalysts in order to extract meaningful information. Frequently, little account has been taken of the apparent complications arising from the presence of microstructural strain and disorder such as that which can be introduced upon doping or of anisotropic effects and such considerations are highlighted. Scanning electron micrograph showing the highly anisotropic nature of biogenic iron oxide found in a natural iron ochre source

    Dealing with missing standard deviation and mean values in meta-analysis of continuous outcomes: a systematic review

    Get PDF
    Background: Rigorous, informative meta-analyses rely on availability of appropriate summary statistics or individual participant data. For continuous outcomes, especially those with naturally skewed distributions, summary information on the mean or variability often goes unreported. While full reporting of original trial data is the ideal, we sought to identify methods for handling unreported mean or variability summary statistics in meta-analysis. Methods: We undertook two systematic literature reviews to identify methodological approaches used to deal with missing mean or variability summary statistics. Five electronic databases were searched, in addition to the Cochrane Colloquium abstract books and the Cochrane Statistics Methods Group mailing list archive. We also conducted cited reference searching and emailed topic experts to identify recent methodological developments. Details recorded included the description of the method, the information required to implement the method, any underlying assumptions and whether the method could be readily applied in standard statistical software. We provided a summary description of the methods identified, illustrating selected methods in example meta-analysis scenarios. Results: For missing standard deviations (SDs), following screening of 503 articles, fifteen methods were identified in addition to those reported in a previous review. These included Bayesian hierarchical modelling at the meta-analysis level; summary statistic level imputation based on observed SD values from other trials in the meta-analysis; a practical approximation based on the range; and algebraic estimation of the SD based on other summary statistics. Following screening of 1124 articles for methods estimating the mean, one approximate Bayesian computation approach and three papers based on alternative summary statistics were identified. Illustrative meta-analyses showed that when replacing a missing SD the approximation using the range minimised loss of precision and generally performed better than omitting trials. When estimating missing means, a formula using the median, lower quartile and upper quartile performed best in preserving the precision of the meta-analysis findings, although in some scenarios, omitting trials gave superior results. Conclusions: Methods based on summary statistics (minimum, maximum, lower quartile, upper quartile, median) reported in the literature facilitate more comprehensive inclusion of randomised controlled trials with missing mean or variability summary statistics within meta-analyses

    On-farm influence of production patterns on total polyphenol content in peach

    Get PDF
    Peach production in France is constantly confronted with marketing problems due to a decrease in fruit consumption and increasing competition with neighbouring Mediterranean countries. The production of higher quality products using production methods such as organic farming (OF) appears to be a tangible way of differentiating and enhancing peach production. To test this hypothesis, an on-farm study was conducted in one of the major production areas in South-eastern France. Focussing on the peach cultivar, cv. Spring Lady®, paired comparisons were conducted between plots in OF and conventional farming (CF). Farmers' practices were identified and checked against crop measurements and performances (yield, sugar content, size classes) in 2004 (12 plots) and in 2005 (10 plots). Polyphenol contents were assessed as an additional component of fruit quality, using the Folin-Ciocalteu colorimetric method. Organic peaches have a higher polyphenol content at harvest. Contents were 4.8 times higher in 2004, whereas the same phenomenon was not observed in 2005. Levels of nitrogen, yield and tree vigour management appeared to be the key elements responsible for the synthesis of total polyphenols and sugar content This implies new opportunities for improving the nutritional quality of peaches, based on production methods

    Analysis of metabolic flux using dynamic labeling and metabolic modeling

    Get PDF
    Metabolic fluxes and the capacity to modulate them are a crucial component of the ability of the plant cell to react to environmental perturbations. Our ability to quantify them and to attain information concerning the regulatory mechanisms which control them is therefore essential to understand and influence metabolic networks. For all but the simplest of flux measurements labelling methods have proven to be the most informative. Both steady-state and dynamic labelling approaches having been adopted in the study of plant metabolism. Here the conceptual basis of these complementary approaches, as well as their historical application in microbial, mammalian and plant sciences are reviewed and an update on technical developments in label distribution analyses is provided. This is supported by illustrative cases studies involving the kinetic modelling of secondary metabolism. One issue that is particularly complex in the analysis of plant fluxes is the extensive compartmentation of the plant cell. This problem is discussed from both theoretical and experimental perspectives and the current approaches used to address it are assessed. Finally, current limitations and future perspectives of kinetic modelling of plant metabolism are discussed
    • …
    corecore