138,480 research outputs found

    Sample size estimation for power and accuracy in the experimental comparison of algorithms

    Get PDF
    Experimental comparisons of performance represent an important aspect of research on optimization algorithms. In this work we present a methodology for defining the required sample sizes for designing experiments with desired statistical properties for the comparison of two methods on a given problem class. The proposed approach allows the experimenter to define desired levels of accuracy for estimates of mean performance differences on individual problem instances, as well as the desired statistical power for comparing mean performances over a problem class of interest. The method calculates the required number of problem instances, and runs the algorithms on each test instance so that the accuracy of the estimated differences in performance is controlled at the predefined level. Two examples illustrate the application of the proposed method, and its ability to achieve the desired statistical properties with a methodologically sound definition of the relevant sample sizes

    Learning Discriminative Stein Kernel for SPD Matrices and Its Applications

    Full text link
    Stein kernel has recently shown promising performance on classifying images represented by symmetric positive definite (SPD) matrices. It evaluates the similarity between two SPD matrices through their eigenvalues. In this paper, we argue that directly using the original eigenvalues may be problematic because: i) Eigenvalue estimation becomes biased when the number of samples is inadequate, which may lead to unreliable kernel evaluation; ii) More importantly, eigenvalues only reflect the property of an individual SPD matrix. They are not necessarily optimal for computing Stein kernel when the goal is to discriminate different sets of SPD matrices. To address the two issues in one shot, we propose a discriminative Stein kernel, in which an extra parameter vector is defined to adjust the eigenvalues of the input SPD matrices. The optimal parameter values are sought by optimizing a proxy of classification performance. To show the generality of the proposed method, three different kernel learning criteria that are commonly used in the literature are employed respectively as a proxy. A comprehensive experimental study is conducted on a variety of image classification tasks to compare our proposed discriminative Stein kernel with the original Stein kernel and other commonly used methods for evaluating the similarity between SPD matrices. The experimental results demonstrate that, the discriminative Stein kernel can attain greater discrimination and better align with classification tasks by altering the eigenvalues. This makes it produce higher classification performance than the original Stein kernel and other commonly used methods.Comment: 13 page

    On the efficiency of estimating penetrating rank on large graphs

    Get PDF
    P-Rank (Penetrating Rank) has been suggested as a useful measure of structural similarity that takes account of both incoming and outgoing edges in ubiquitous networks. Existing work often utilizes memoization to compute P-Rank similarity in an iterative fashion, which requires cubic time in the worst case. Besides, previous methods mainly focus on the deterministic computation of P-Rank, but lack the probabilistic framework that scales well for large graphs. In this paper, we propose two efficient algorithms for computing P-Rank on large graphs. The first observation is that a large body of objects in a real graph usually share similar neighborhood structures. By merging such objects with an explicit low-rank factorization, we devise a deterministic algorithm to compute P-Rank in quadratic time. The second observation is that by converting the iterative form of P-Rank into a matrix power series form, we can leverage the random sampling approach to probabilistically compute P-Rank in linear time with provable accuracy guarantees. The empirical results on both real and synthetic datasets show that our approaches achieve high time efficiency with controlled error and outperform the baseline algorithms by at least one order of magnitude

    FLEET: Butterfly Estimation from a Bipartite Graph Stream

    Full text link
    We consider space-efficient single-pass estimation of the number of butterflies, a fundamental bipartite graph motif, from a massive bipartite graph stream where each edge represents a connection between entities in two different partitions. We present a space lower bound for any streaming algorithm that can estimate the number of butterflies accurately, as well as FLEET, a suite of algorithms for accurately estimating the number of butterflies in the graph stream. Estimates returned by the algorithms come with provable guarantees on the approximation error, and experiments show good tradeoffs between the space used and the accuracy of approximation. We also present space-efficient algorithms for estimating the number of butterflies within a sliding window of the most recent elements in the stream. While there is a significant body of work on counting subgraphs such as triangles in a unipartite graph stream, our work seems to be one of the few to tackle the case of bipartite graph streams.Comment: This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariyuce and Srikanta Tirthapura. "FLEET: Butterfly Estimation from a Bipartite Graph Stream". The 28th ACM International Conference on Information and Knowledge Managemen
    corecore