32,280 research outputs found

    Machine prognostics based on health state estimation using SVM

    Get PDF
    The ability to accurately predict the remaining useful life of machine components is critical for continuous operations in machines which can also improve productivity and enhance system safety. In condition-based maintenance (CBM), effective diagnostics and prognostics are important aspects of CBM which provide sufficient time for maintenance engineers to schedule a repair and acquire replacement components before the components finally fail. All machine components have certain characteristics of failure patterns and are subjected to degradation processes in real environments. This paper describes a technique for accurate assessment of the remnant life of machines based on prior expert knowledge embedded in closed loop prognostics systems. The technique uses Support Vector Machines (SVM) for classification of faults and evaluation of health for six stages of bearing degradation. To validate the feasibility of the proposed model, several fault historical data from High Pressure Liquefied Natural Gas (LNG) pumps were analysed to obtain their failure patterns. The results obtained were very encouraging and the prediction closely matched the real life particularly at the end of term of the bearings

    Model Order Selection in DoA Scenarios via Cross-Entropy based Machine Learning Techniques

    Full text link
    In this paper, we present a machine learning approach for estimating the number of incident wavefronts in a direction of arrival scenario. In contrast to previous works, a multilayer neural network with a cross-entropy objective is trained. Furthermore, we investigate an online training procedure that allows an adaption of the neural network to imperfections of an antenna array without explicitly calibrating the array manifold. We show via simulations that the proposed method outperforms classical model order selection schemes based on information criteria in terms of accuracy, especially for a small number of snapshots and at low signal-to-noise-ratios. Also, the online training procedure enables the neural network to adapt with only a few online training samples, if initialized by offline training on artificial data

    On the consistency of Multithreshold Entropy Linear Classifier

    Get PDF
    Multithreshold Entropy Linear Classifier (MELC) is a recent classifier idea which employs information theoretic concept in order to create a multithreshold maximum margin model. In this paper we analyze its consistency over multithreshold linear models and show that its objective function upper bounds the amount of misclassified points in a similar manner like hinge loss does in support vector machines. For further confirmation we also conduct some numerical experiments on five datasets.Comment: Presented at Theoretical Foundations of Machine Learning 2015 (http://tfml.gmum.net), final version published in Schedae Informaticae Journa

    Detection of postural transitions using machine learning

    Get PDF
    The purpose of this project is to study the nature of human activity recognition and prepare a dataset from volunteers doing various activities which can be used for constructing the various parts of a machine learning model which is used to identify each volunteers posture transitions accurately. This report presents the problem definition, equipment used, previous work in this area of human activity recognition and the resolution of the problem along with results. Also this report sheds light on the process and the steps taken to undertake this endeavour of human activity recognition such as building of a dataset, pre-processing the data by applying filters and various windowing length techniques, splitting the data into training and testing data, performance of feature selection and feature extraction and finally selecting the model for training and testing which provides maximum accuracy and least misclassification rates. The tools used for this project includes a laptop equipped with MATLAB and EXCEL and MEDIA PLAYER CLASSIC respectively which have been used for data processing, model training and feature selection and Labelling respectively. The data has been collected using an Inertial Measurement Unit contains 3 tri-axial Accelerometers, 1 Gyroscope, 1 Magnetometer and 1 Pressure sensor. For this project only the Accelerometers, Gyroscope and the Pressure sensor is used. The sensor is made by the members of the lab named ‘The Technical Research Centre for Dependency Care and Autonomous Living (CETpD) at the UPC-ETSEIB campus. The results obtained have been satisfactory, and the objectives set have been fulfilled. There is room for possible improvements through expanding the scope of the project such as detection of chronic disorders or providing posture based statistics to the end user or even just achieving a higher rate of sensitivity of transitions of posture by using better features and increasing the dataset size by increasing the number of volunteers.Incomin

    Kernel-based Information Criterion

    Full text link
    This paper introduces Kernel-based Information Criterion (KIC) for model selection in regression analysis. The novel kernel-based complexity measure in KIC efficiently computes the interdependency between parameters of the model using a variable-wise variance and yields selection of better, more robust regressors. Experimental results show superior performance on both simulated and real data sets compared to Leave-One-Out Cross-Validation (LOOCV), kernel-based Information Complexity (ICOMP), and maximum log of marginal likelihood in Gaussian Process Regression (GPR).Comment: We modified the reference 17, and the subcaptions of Figure

    Optimized complex power quality classifier using one vs. rest support vector machine

    Get PDF
    Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a ?One Vs Rest? architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Bhowmik, Sudipto. Nexant Inc; Estados UnidosFil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin
    corecore