24 research outputs found

    Long-memory recursive prediction error method for identification of continuous-time fractional models

    Get PDF
    This paper deals with recursive continuous-time system identification using fractional-order models. Long-memory recursive prediction error method is proposed for recursive estimation of all parameters of fractional-order models. When differentiation orders are assumed known, least squares and prediction error methods, being direct extensions to fractional-order models of the classic methods used for integer-order models, are compared to our new method, the long-memory recursive prediction error method. Given the long-memory property of fractional models, Monte Carlo simulations prove the efficiency of our proposed algorithm. Then, when the differentiation orders are unknown, two-stage algorithms are necessary for both parameter and differentiation-order estimation. The performances of the new proposed recursive algorithm are studied through Monte Carlo simulations. Finally, the proposed algorithm is validated on a biological example where heat transfers in lungs are modeled by using thermal two-port network formalism with fractional models

    Applications of fractional calculus in electrical and computer engineering

    Get PDF
    Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of several systems. This article illustrates several applications of fractional calculus in science and engineering. It has been recognized the advantageous use of this mathematical tool in the modeling and control of many dynamical systems. In this perspective, this paper investigates the use of FC in the fields of controller tuning, electrical systems, digital circuit synthesis, evolutionary computing, redundant robots, legged robots, robotic manipulators, nonlinear friction and financial modeling.N/

    Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

    Get PDF
    Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain identification fractional-order chaotic systems where conventional derivation is replaced by a fractional one with the help of a non-integer derivation. This operator is itself approximated by a N-dimensional system composed of an integrator and a phase-lead filter. A hybrid particle swarm optimization (PSO) and genetic algorithm (GA) method has been applied to estimate the parameters of approximated nonlinear fractional-order chaotic system that modeled by a state-space representation. The feasibility of this approach is demonstrated through identifying the parameters of approximated fractional-order Lorenz chaotic system. The performance of the proposed algorithm is compared with the genetic algorithm (GA) and standard particle swarm optimization (SPSO) in terms of parameter accuracy and cost function. To evaluate the identification accuracy, the time-domain output error is designed as the fitness function for parameter optimization. Simulation results show that the proposed method is more successful than other algorithms for parameter identification of fractional order chaotic systems

    Analog Implementation of Fractional-Order Elements and Their Applications

    Get PDF
    With advancements in the theory of fractional calculus and also with widespread engineering application of fractional-order systems, analog implementation of fractional-order integrators and differentiators have received considerable attention. This is due to the fact that this powerful mathematical tool allows us to describe and model a real-world phenomenon more accurately than via classical “integer” methods. Moreover, their additional degree of freedom allows researchers to design accurate and more robust systems that would be impractical or impossible to implement with conventional capacitors. Throughout this thesis, a wide range of problems associated with analog circuit design of fractional-order systems are covered: passive component optimization of resistive-capacitive and resistive-inductive type fractional-order elements, realization of active fractional-order capacitors (FOCs), analog implementation of fractional-order integrators, robust fractional-order proportional-integral control design, investigation of different materials for FOC fabrication having ultra-wide frequency band, low phase error, possible low- and high-frequency realization of fractional-order oscillators in analog domain, mathematical and experimental study of solid-state FOCs in series-, parallel- and interconnected circuit networks. Consequently, the proposed approaches in this thesis are important considerations in beyond the future studies of fractional dynamic systems

    Techniques to Improve the Efficiency of Data Transmission in Cable Networks

    Get PDF
    The cable television (CATV) networks, since their introduction in the late 1940s, have now become a crucial part of the broadcasting industry. To keep up with growing demands from the subscribers, cable networks nowadays not only provide television programs but also deliver two-way interactive services such as telephone, high-speed Internet and social TV features. A new standard for CATV networks is released every five to six years to satisfy the growing demands from the mass market. From this perspective, this thesis is concerned with three main aspects for the continuing development of cable networks: (i) efficient implementations of backward-compatibility functions from the old standard, (ii) addressing and providing solutions for technically-challenging issues in the current standard and, (iii) looking for prospective features that can be implemented in the future standard. Since 1997, five different versions of the digital CATV standard had been released in North America. A new standard often contains major improvements over the previous one. The latest version of the standard, namely DOCSIS 3.1 (released in late 2013), is packed with state-of-the-art technologies and allows approximately ten times the amount of traffic as compared to the previous standard, DOCSIS 3.0 (released in 2008). Backward-compatibility is a must-have function for cable networks. In particular, to facilitate the system migration from older standards to a newer one, the backward compatible functions in the old standards must remain in the newer-standard products. More importantly, to keep the implementation cost low, the inherited backward compatible functions must be redesigned by taking advantage of the latest technology and algorithms. To improve the backward-compatibility functions, the first contribution of the thesis focuses on redesigning the pulse shaping filter by exploiting infinite impulse response (IIR) filter structures as an alternative to the conventional finite impulse response (FIR) structures. Comprehensive comparisons show that more economical filters with better performance can be obtained by the proposed design algorithm, which considers a hybrid parameterization of the filter's transfer function in combination with a constraint on the pole radius to be less than 1. The second contribution of the thesis is a new fractional timing estimation algorithm based on peak detection by log-domain interpolation. When compared with the commonly-used timing detection method, which is based on parabolic interpolation, the proposed algorithm yields more accurate estimation with a comparable implementation cost. The third contribution of the thesis is a technique to estimate the multipath channel for DOCSIS 3.1 cable networks. DOCSIS 3.1 is markedly different from prior generations of CATV networks in that OFDM/OFDMA is employed to create a spectrally-efficient signal. In order to effectively demodulate such a signal, it is necessary to employ a demodulation circuit which involves estimation and tracking of the multipath channel. The estimation and tracking must be highly accurate because extremely dense constellations such as 4096-QAM and possibly 16384-QAM can be used in DOCSIS 3.1. The conventional OFDM channel estimators available in the literature either do not perform satisfactorily or are not suitable for the DOCSIS 3.1 channel. The novel channel estimation technique proposed in this thesis iteratively searches for parameters of the channel paths. The proposed technique not only substantially enhances the channel estimation accuracy, but also can, at no cost, accurately identify the delay of each echo in the system. The echo delay information is valuable for proactive maintenance of the network. The fourth contribution of this thesis is a novel scheme that allows OFDM transmission without the use of a cyclic prefix (CP). The structure of OFDM in the current DOCSIS 3.1 does not achieve the maximum throughput if the channel has multipath components. The multipath channel causes inter-symbol-interference (ISI), which is commonly mitigated by employing CP. The CP acts as a guard interval that, while successfully protecting the signal from ISI, reduces the transmission throughput. The problem becomes more severe for downstream direction, where the throughput of the entire system is determined by the user with the worst channel. To solve the problem, this thesis proposes major alterations to the current DOCSIS 3.1 OFDM/OFDMA structure. The alterations involve using a pair of Nyquist filters at the transceivers and an efficient time-domain equalizer (TEQ) at the receiver to reduce ISI down to a negligible level without the need of CP. Simulation results demonstrate that, by incorporating the proposed alterations to the DOCSIS 3.1 down-link channel, the system can achieve the maximum throughput over a wide range of multipath channel conditions

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Modular platform for research in microgrids

    Get PDF
    The present Ph.D. thesis has been developed following an Industrial Ph.D. program and verses on developing a commercial piece of equipment for teknoCEA, a spin-off company from CITCEA-UPC. The thesis is centered on developing power electronics-based emulation systems for research in microgrids. Lately, the use of power electronics-based emulation systems is drawing substantial attention in the field of microgrids because their characteristics substantially facilitate research in laboratory facilities. First, the suitability of different topologies for implementing an emulation platform is analyzed. The focus is set on the topologies adjustability to implement various types of emulation systems. The analysis determines the most appropriate number of legs for the platform. A comparative analysis is done between two-level and multi-level topologies to determine their suitability based on different aspects. Moreover, the analysis confirms the usefulness of wide-bandgap semiconductors for this type of application. Next, a control structure is proposed together with its implementation in a low-cost microcontroller based on a modular software architecture. The control strategy based on fractional proportional resonant controllers for AC emulation systems provides a control system with high control bandwidth while keeping a low computational cost. The control strategy for DC emulation systems is provided to reach a fast transient response and immunity to external disturbances, which is key for good emulation of electric systems. The modular software architecture provides a software framework easily adjustable to the needs of multiple emulation systems. That allows the implementation of the multiple control strategies with minimum changes. Additionally provides a graphical representation of the software architecture from a static and dynamic point of view. Last, the reliability of the proposed platform is assessed based on the reliability curves provided in the literature. The reliability analysis is centered on the semiconductors and capacitors. It provides evidence that emulation systems typical currents and voltages clearly affect their reliability. For the capacitors reliability assessment, a thermal modeling methodology is proposed to overcome the limitations of standard approximations. The methodology is based on anisotropic modeling of the capacitor winding. Finally, the reliability analysis establishes the guidelines to assess the platform reliability if a given mission profile is provided.La present tesi doctoral s'ha dut a terme seguint un programa de doctorat industrial. La tesi exposa el desenvolupament d'un equip comercial per a teknoCEA, una spin-off del CITCEA-UPC. La tesi es centra en el desenvolupament d'emuladors basats en electrònica de potència per recerca en el camp de les microxarxes. Darrerament, l'ús d'emuladors s'ha estès ja que les seves característiques faciliten molt la recerca en laboratoris. En primer lloc, s'analitza la idoneïtat de diferents topologies per implementar una plataforma d'emulació. El focus recau en la capacitat de diferents topologies per ajustar-se a la implementació de múltiples sistemes d'emulació. L'anàlisi determina el número òptim de branques. Un anàlisi comparatiu entre topologies dos nivells i multinivell permet determinar-ne la idoneïtat en funció de diferents aspectes. A continuació, es proposa una estructura de control juntament amb la seva implementació en un microcontrolador de baix cost a partir d'una arquitectura de programari modular. L'estratègia de control basada en controladors FPR (fractional proportional resonant) per a emuladors de corrent altern, proporciona un sistema de control amb un gran ample de banda amb un baix cost computacional. L'estratègia de control proposada per emuladors de corrent continu proporciona una resposta transitòria ràpida i elevada immunitat a pertorbacions, aspecte clau per a una bona emulació de sistemes elèctrics. L'arquitectura de programari modular proporciona un marc de programari fàcilment ajustable a les necessitats de múltiples emuladors. Això permet la implementació de les múltiples estratègies de control amb canvis mínims. A més, ofereix una representació gràfica de l'arquitectura del programari tant des d'un punt de vista estàtic com dinàmic. Finalment, s'avalua la fiabilitat de la plataforma a partir de les corbes de fiabilitat disponibles a la bibliografia científica. L'anàlisi es centra en els semiconductors i condensadors i proporciona evidència que els corrents i les tensions típics en emuladors afecten la seva fiabilitat. Per a l'avaluació de la fiabilitat dels condensadors, es proposa una metodologia de modelització tèrmica que permet superar les limitacions de les metodologies emprades típicament en la bibliografia científica. La metodologia es basa en el modelatge del bobinat del condensador com un element anisòtrop. Per últim, l'anàlisi de fiabilitat estableix les pautes per avaluar la fiabilitat de la plataforma en el cas que es proporcioni un perfil d'operació determinat.Postprint (published version

    About intelligent maintenance and diagnosis techniques for mechatronic systems : case study using fractional order calculus

    Get PDF
    Orientadores: João Maurício Rosário, José António Tenreiro MachadoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia MecânicaResumo: A competitividade no mercado global exige cada vez mais a fabricação de produtos de alta qualidade em curto tempo de fabricação, evitando tempos de parada para manutenção e reparo de máquinas e equipamentos, exigindo assim um eficiente controle de qualidade do processo e dos produtos para evitar a ocorrência de falhas de fabricação e utilização. A integração de novas tecnologias em produtos industriais (ex. tecnologias mecatrônicas) exige a utilização de técnicas avançadas para o diagnóstico de falhas, a partir de análise dos sinais obtidos a partir do sensoriamento dos equipamentos, minimizando assim os custos de utilização de mão de obra especializada para controle de qualidade do produto. Neste trabalho é apresentado inicialmente, um estudo sobre o estado da arte em técnicas de manutenção industrial, com ênfase nas estratégias utilizadas para manutenção corretiva, periódica e baseada no comportamento com ênfase no estudo das técnicas de processamento do sinal e identificação de sistemas, frequentemente utilizadas no diagnóstico de sistemas mecatrônicos, que exigem uma grande quantidade de informações, e forte dependência da análise criteriosa de um técnico especializado. Assim, neste trabalho são utilizados sistemas de ordem fracionária, que permite a aproximação do comportamento real do sistema por meio de modelos com menos coeficientes que o sistema real, simplificando a análise do sistema em estudo. Um estudo experimental de caso para validação do trabalho é realizado a partir de uma bancada experimental de um sistema de transmissão por engrenagens que permitiu introduzir falhas particulares no sistema e sua identificaçãoAbstract: The global market competitiveness requires to make high quality products in a short time of manufacturing, avoiding stop-times due to maintenance and repairing of machines and devices, therefore, demanding an efficient quality control of the manufacturing process, in order to shun failures in fabrication and utilization. The integration of new technologies into industrial products (e.g. mechatronics technologies) requires the use of advanced techniques to a precise failure diagnosis. They are typically based on signal analyses, which are obtained from the machines' instrumentation, and consequently, reduce the manpower costs associated to quality control of particular products. In this work it is introduced a literature review of industrial maintenance techniques, focusing in the strategies used into corrective, periodic and condition based maintenance, specially using signal processing and system identification. Those paradigms are frequently applied into the mechatronics systems diagnosis, but requires a huge amount of information and it is strongly dependent on the specialist criterion. In this sense, we introduced a fractional order system approach, which results in a better approximation of the actual system through an few parameters architecture, hence simplifying the analysis of the actual system. A real experimental setup was used to validate the strategies studied in this work. It consist in a gear transmission that lets to introduce particular failures for a posterior identificationDoutoradoMecanica dos Sólidos e Projeto MecanicoDoutor em Engenharia Mecânic

    Advanced tools for interactive design of simple controllers

    Get PDF
    Cílem této práce je návrh nástrojů pro identifikaci modelu reálného procesu, návrh robustního regulátoru pro procesy s neurčitostí, optimalizaci chování zpětnovazební smyčky v časové oblasti. V první části práce je vysvětlena část teorie řízení, která byla použita pro autorovo řešení. Autorův přístup je zaměřen na metodu ladění regulátorů pomocí robustních regionů stability pro PI regulátory, procesy s neurčitostí, množinový model a integrální kritéria optimality v časové oblasti. V druhé části práce je analyzovaný současný stav nástrojů pro návrh regulátorů a identifikaci procesů. Ve třetí části je popsána implementace identifikačního modulu, návrh robustního regulátoru pro procesy s neurčitostí a nástroj pro optimalizaci chování zpětnovazebné smyčky v časové oblasti pomocí integrálních kritérií. Je zde také představena metoda gradientní optimalizace. V závěrečné části této práce je ověřena funkčnost vyvinutých nástrojů na reálném systému.ObhájenoThe aim of this thesis is to develop tools for process model identification, robust controller design for processes with uncertainty, and closed-loop performance optimization in the time domain. In the first part, the control theory used in the author's approach is explained. The approach is focused on the controller tuning method using the robust stability regions for PI controllers, processes with uncertainty, the Model set approach, and the time domain integral criteria of optimality. In the second part, the state-of-the-art of the current controller design and process identification tools is analyzed. In the third part, the implementation of the identification module, robust controller design for processes with uncertainty, and a tool for closed-loop optimization in the time domain using the integral criteria is described. The gradient optimization method is shown here. In the final part, the functionality of the developed tools is validated on a real system
    corecore