825 research outputs found

    Preprocessing Techniques in Character Recognition

    Get PDF

    Real-time search-free multiple license plate recognition via likelihood estimation of saliency

    Get PDF
    In this paper, we propose a novel search-free localization method based on 3-D Bayesian saliency estimation. This method uses a new 3-D object tracking algorithm which includes: object detection, shadow detection and removal, and object recognition based on Bayesian methods. The algorithm is tested over three image datasets with different levels of complexities, and the results are compared with those of benchmark methods in terms of speed and accuracy. Unlike most search-based license-plate extraction methods, our proposed 3-D Bayesian saliency algorithm has lower execution time (less than 60 ms), more accuracy, and it is a search-free algorithm which works in noisy backgrounds

    Boolean Weightless Neural Network Architectures

    Get PDF
    A collection of hardware weightless Boolean elements has been developed. These form fundamental building blocks which have particular pertinence to the field of weightless neural networks. They have also been shown to have merit in their own right for the design of robust architectures. A major element of this is a collection of weightless Boolean sum and threshold techniques. These are fundamental building blocks which can be used in weightless architectures particularly within the field of weightless neural networks. Included in these is the implementation of L-max also known as N point thresholding. These elements have been applied to design a Boolean weightless hardware version of Austin’s ADAM neural network. ADAM is further enhanced by the addition of a new learning paradigm, that of non-Hebbian Learning. This new method concentrates on the association of ‘dis-similarity’, believing this is as important as areas of similarity. Image processing using hardware weightless neural networks is investigated through simulation of digital filters using a Type 1 Neuroram neuro-filter. Simulations have been performed using MATLAB to compare the results to a conventional median filter. Type 1 Neuroram has been tested on an extended collection of noise types. The importance of the threshold has been examined and the effect of cascading both types of filters was examined. This research has led to the development of several novel weightless hardware elements that can be applied to image processing. These patented elements include a weightless thermocoder and two weightless median filters. These novel robust high speed weightless filters have been compared with conventional median filters. The robustness of these architectures has been investigated when subjected to accelerated ground based generated neutron radiation simulating the atmospheric radiation spectrum experienced at commercial avionic altitudes. A trial investigating the resilience of weightless hardware Boolean elements in comparison to standard weighted arithmetic logic is detailed, examining the effects on the operation of the function when implemented on hardware experiencing high energy neutron bombardment induced single event effects. Further weightless Boolean elements are detailed which contribute to the development of a weightless implementation of the traditionally weighted self ordered map

    Learning sparse representations of depth

    Full text link
    This paper introduces a new method for learning and inferring sparse representations of depth (disparity) maps. The proposed algorithm relaxes the usual assumption of the stationary noise model in sparse coding. This enables learning from data corrupted with spatially varying noise or uncertainty, typically obtained by laser range scanners or structured light depth cameras. Sparse representations are learned from the Middlebury database disparity maps and then exploited in a two-layer graphical model for inferring depth from stereo, by including a sparsity prior on the learned features. Since they capture higher-order dependencies in the depth structure, these priors can complement smoothness priors commonly used in depth inference based on Markov Random Field (MRF) models. Inference on the proposed graph is achieved using an alternating iterative optimization technique, where the first layer is solved using an existing MRF-based stereo matching algorithm, then held fixed as the second layer is solved using the proposed non-stationary sparse coding algorithm. This leads to a general method for improving solutions of state of the art MRF-based depth estimation algorithms. Our experimental results first show that depth inference using learned representations leads to state of the art denoising of depth maps obtained from laser range scanners and a time of flight camera. Furthermore, we show that adding sparse priors improves the results of two depth estimation methods: the classical graph cut algorithm by Boykov et al. and the more recent algorithm of Woodford et al.Comment: 12 page

    Adaptive Algorithms for Automated Processing of Document Images

    Get PDF
    Large scale document digitization projects continue to motivate interesting document understanding technologies such as script and language identification, page classification, segmentation and enhancement. Typically, however, solutions are still limited to narrow domains or regular formats such as books, forms, articles or letters and operate best on clean documents scanned in a controlled environment. More general collections of heterogeneous documents challenge the basic assumptions of state-of-the-art technology regarding quality, script, content and layout. Our work explores the use of adaptive algorithms for the automated analysis of noisy and complex document collections. We first propose, implement and evaluate an adaptive clutter detection and removal technique for complex binary documents. Our distance transform based technique aims to remove irregular and independent unwanted foreground content while leaving text content untouched. The novelty of this approach is in its determination of best approximation to clutter-content boundary with text like structures. Second, we describe a page segmentation technique called Voronoi++ for complex layouts which builds upon the state-of-the-art method proposed by Kise [Kise1999]. Our approach does not assume structured text zones and is designed to handle multi-lingual text in both handwritten and printed form. Voronoi++ is a dynamically adaptive and contextually aware approach that considers components' separation features combined with Docstrum [O'Gorman1993] based angular and neighborhood features to form provisional zone hypotheses. These provisional zones are then verified based on the context built from local separation and high-level content features. Finally, our research proposes a generic model to segment and to recognize characters for any complex syllabic or non-syllabic script, using font-models. This concept is based on the fact that font files contain all the information necessary to render text and thus a model for how to decompose them. Instead of script-specific routines, this work is a step towards a generic character and recognition scheme for both Latin and non-Latin scripts

    Some novel digital image filters for suppression of impulsive noise

    Get PDF
    In digital imaging, quality of image degrades due to contamination of various types of noise during the process of acquisition, transmission and storage. Especially impulse noise appears during image acquisition and transmission, which severely degrades the image quality and cause a great loss of information details in an image. Various filtering technique are found in literature for removal of impulse noise. Nonlinear filter such as standard median, weight median filter, center weight median and switching based median filter out perform the linear filters. This thesis investigates the performance analysis of different nonlinear filtering schemes. The performance of these filters can be improved by incorporating the mechanism of noise detection and then applying switching based adaptive filtering approach. Three novel filtering approaches that incorporate the above principles are proposed. It is found that all three approaches give noticeable performance improvement of over many filters reported in literature

    Boolean weightless neural network architectures

    Get PDF
    A collection of hardware weightless Boolean elements has been developed. These form fundamental building blocks which have particular pertinence to the field of weightless neural networks. They have also been shown to have merit in their own right for the design of robust architectures. A major element of this is a collection of weightless Boolean sum and threshold techniques. These are fundamental building blocks which can be used in weightless architectures particularly within the field of weightless neural networks. Included in these is the implementation of L-max also known as N point thresholding. These elements have been applied to design a Boolean weightless hardware version of Austin’s ADAM neural network. ADAM is further enhanced by the addition of a new learning paradigm, that of non-Hebbian Learning. This new method concentrates on the association of ‘dis-similarity’, believing this is as important as areas of similarity. Image processing using hardware weightless neural networks is investigated through simulation of digital filters using a Type 1 Neuroram neuro-filter. Simulations have been performed using MATLAB to compare the results to a conventional median filter. Type 1 Neuroram has been tested on an extended collection of noise types. The importance of the threshold has been examined and the effect of cascading both types of filters was examined. This research has led to the development of several novel weightless hardware elements that can be applied to image processing. These patented elements include a weightless thermocoder and two weightless median filters. These novel robust high speed weightless filters have been compared with conventional median filters. The robustness of these architectures has been investigated when subjected to accelerated ground based generated neutron radiation simulating the atmospheric radiation spectrum experienced at commercial avionic altitudes. A trial investigating the resilience of weightless hardware Boolean elements in comparison to standard weighted arithmetic logic is detailed, examining the effects on the operation of the function when implemented on hardware experiencing high energy neutron bombardment induced single event effects. Further weightless Boolean elements are detailed which contribute to the development of a weightless implementation of the traditionally weighted self ordered map.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore