6,290 research outputs found

    ImageSpirit: Verbal Guided Image Parsing

    Get PDF
    Humans describe images in terms of nouns and adjectives while algorithms operate on images represented as sets of pixels. Bridging this gap between how humans would like to access images versus their typical representation is the goal of image parsing, which involves assigning object and attribute labels to pixel. In this paper we propose treating nouns as object labels and adjectives as visual attribute labels. This allows us to formulate the image parsing problem as one of jointly estimating per-pixel object and attribute labels from a set of training images. We propose an efficient (interactive time) solution. Using the extracted labels as handles, our system empowers a user to verbally refine the results. This enables hands-free parsing of an image into pixel-wise object/attribute labels that correspond to human semantics. Verbally selecting objects of interests enables a novel and natural interaction modality that can possibly be used to interact with new generation devices (e.g. smart phones, Google Glass, living room devices). We demonstrate our system on a large number of real-world images with varying complexity. To help understand the tradeoffs compared to traditional mouse based interactions, results are reported for both a large scale quantitative evaluation and a user study.Comment: http://mmcheng.net/imagespirit

    Saliency-guided integration of multiple scans

    Get PDF
    we present a novel method..

    The Secrets of Salient Object Segmentation

    Get PDF
    In this paper we provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets. Our analysis identifies serious design flaws of existing salient object benchmarks, called the dataset design bias, by over emphasizing the stereotypical concepts of saliency. The dataset design bias does not only create the discomforting disconnection between fixations and salient object segmentation, but also misleads the algorithm designing. Based on our analysis, we propose a new high quality dataset that offers both fixation and salient object segmentation ground-truth. With fixations and salient object being presented simultaneously, we are able to bridge the gap between fixations and salient objects, and propose a novel method for salient object segmentation. Finally, we report significant benchmark progress on three existing datasets of segmenting salient objectsComment: 15 pages, 8 figures. Conference version was accepted by CVPR 201

    Memory-Efficient Deep Salient Object Segmentation Networks on Gridized Superpixels

    Full text link
    Computer vision algorithms with pixel-wise labeling tasks, such as semantic segmentation and salient object detection, have gone through a significant accuracy increase with the incorporation of deep learning. Deep segmentation methods slightly modify and fine-tune pre-trained networks that have hundreds of millions of parameters. In this work, we question the need to have such memory demanding networks for the specific task of salient object segmentation. To this end, we propose a way to learn a memory-efficient network from scratch by training it only on salient object detection datasets. Our method encodes images to gridized superpixels that preserve both the object boundaries and the connectivity rules of regular pixels. This representation allows us to use convolutional neural networks that operate on regular grids. By using these encoded images, we train a memory-efficient network using only 0.048\% of the number of parameters that other deep salient object detection networks have. Our method shows comparable accuracy with the state-of-the-art deep salient object detection methods and provides a faster and a much more memory-efficient alternative to them. Due to its easy deployment, such a network is preferable for applications in memory limited devices such as mobile phones and IoT devices.Comment: 6 pages, submitted to MMSP 201

    Automatic detection of salient objects and spatial relations in videos for a video database system

    Get PDF
    Cataloged from PDF version of article.Multimedia databases have gained popularity due to rapidly growing quantities of multimedia data and the need to perform efficient indexing, retrieval and analysis of this data. One downside of multimedia databases is the necessity to process the data for feature extraction and labeling prior to storage and querying. Huge amount of data makes it impossible to complete this task manually. We propose a tool for the automatic detection and tracking of salient objects, and derivation of spatio-temporal relations between them in video. Our system aims to reduce the work for manual selection and labeling of objects significantly by detecting and tracking the salient objects, and hence, requiring to enter the label for each object only once within each shot instead of specifying the labels for each object in every frame they appear. This is also required as a first step in a fully-automatic video database management system in which the labeling should also be done automatically. The proposed framework covers a scalable architecture for video processing and stages of shot boundary detection, salient object detection and tracking, and knowledge-base construction for effective spatio-temporal object querying. (c) 2008 Elsevier B.V. All rights reserved
    corecore