23,090 research outputs found

    RGB-T salient object detection via fusing multi-level CNN features

    Get PDF
    RGB-induced salient object detection has recently witnessed substantial progress, which is attributed to the superior feature learning capability of deep convolutional neural networks (CNNs). However, such detections suffer from challenging scenarios characterized by cluttered backgrounds, low-light conditions and variations in illumination. Instead of improving RGB based saliency detection, this paper takes advantage of the complementary benefits of RGB and thermal infrared images. Specifically, we propose a novel end-to-end network for multi-modal salient object detection, which turns the challenge of RGB-T saliency detection to a CNN feature fusion problem. To this end, a backbone network (e.g., VGG-16) is first adopted to extract the coarse features from each RGB or thermal infrared image individually, and then several adjacent-depth feature combination (ADFC) modules are designed to extract multi-level refined features for each single-modal input image, considering that features captured at different depths differ in semantic information and visual details. Subsequently, a multi-branch group fusion (MGF) module is employed to capture the cross-modal features by fusing those features from ADFC modules for a RGB-T image pair at each level. Finally, a joint attention guided bi-directional message passing (JABMP) module undertakes the task of saliency prediction via integrating the multi-level fused features from MGF modules. Experimental results on several public RGB-T salient object detection datasets demonstrate the superiorities of our proposed algorithm over the state-of-the-art approaches, especially under challenging conditions, such as poor illumination, complex background and low contrast

    Instance-Level Salient Object Segmentation

    Full text link
    Image saliency detection has recently witnessed rapid progress due to deep convolutional neural networks. However, none of the existing methods is able to identify object instances in the detected salient regions. In this paper, we present a salient instance segmentation method that produces a saliency mask with distinct object instance labels for an input image. Our method consists of three steps, estimating saliency map, detecting salient object contours and identifying salient object instances. For the first two steps, we propose a multiscale saliency refinement network, which generates high-quality salient region masks and salient object contours. Once integrated with multiscale combinatorial grouping and a MAP-based subset optimization framework, our method can generate very promising salient object instance segmentation results. To promote further research and evaluation of salient instance segmentation, we also construct a new database of 1000 images and their pixelwise salient instance annotations. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks for salient region detection as well as on our new dataset for salient instance segmentation.Comment: To appear in CVPR201

    Backtracking Spatial Pyramid Pooling (SPP)-based Image Classifier for Weakly Supervised Top-down Salient Object Detection

    Full text link
    Top-down saliency models produce a probability map that peaks at target locations specified by a task/goal such as object detection. They are usually trained in a fully supervised setting involving pixel-level annotations of objects. We propose a weakly supervised top-down saliency framework using only binary labels that indicate the presence/absence of an object in an image. First, the probabilistic contribution of each image region to the confidence of a CNN-based image classifier is computed through a backtracking strategy to produce top-down saliency. From a set of saliency maps of an image produced by fast bottom-up saliency approaches, we select the best saliency map suitable for the top-down task. The selected bottom-up saliency map is combined with the top-down saliency map. Features having high combined saliency are used to train a linear SVM classifier to estimate feature saliency. This is integrated with combined saliency and further refined through a multi-scale superpixel-averaging of saliency map. We evaluate the performance of the proposed weakly supervised topdown saliency and achieve comparable performance with fully supervised approaches. Experiments are carried out on seven challenging datasets and quantitative results are compared with 40 closely related approaches across 4 different applications.Comment: 14 pages, 7 figure

    S4Net: Single Stage Salient-Instance Segmentation

    Full text link
    We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{https://github.com/RuochenFan/S4Net}

    Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground

    Full text link
    We provide a comprehensive evaluation of salient object detection (SOD) models. Our analysis identifies a serious design bias of existing SOD datasets which assumes that each image contains at least one clearly outstanding salient object in low clutter. The design bias has led to a saturated high performance for state-of-the-art SOD models when evaluated on existing datasets. The models, however, still perform far from being satisfactory when applied to real-world daily scenes. Based on our analyses, we first identify 7 crucial aspects that a comprehensive and balanced dataset should fulfill. Then, we propose a new high quality dataset and update the previous saliency benchmark. Specifically, our SOC (Salient Objects in Clutter) dataset, includes images with salient and non-salient objects from daily object categories. Beyond object category annotations, each salient image is accompanied by attributes that reflect common challenges in real-world scenes. Finally, we report attribute-based performance assessment on our dataset.Comment: ECCV 201

    Unconstrained salient object detection via proposal subset optimization

    Full text link
    We aim at detecting salient objects in unconstrained images. In unconstrained images, the number of salient objects (if any) varies from image to image, and is not given. We present a salient object detection system that directly outputs a compact set of detection windows, if any, for an input image. Our system leverages a Convolutional-Neural-Network model to generate location proposals of salient objects. Location proposals tend to be highly overlapping and noisy. Based on the Maximum a Posteriori principle, we propose a novel subset optimization framework to generate a compact set of detection windows out of noisy proposals. In experiments, we show that our subset optimization formulation greatly enhances the performance of our system, and our system attains 16-34% relative improvement in Average Precision compared with the state-of-the-art on three challenging salient object datasets.http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Unconstrained_Salient_Object_CVPR_2016_paper.htmlPublished versio
    • …
    corecore