305 research outputs found

    Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    Get PDF
    This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM), is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case

    3D-3D Deformable Registration and Deep Learning Segmentation based Neck Diseases Analysis in MRI

    Full text link
    Whiplash, cervical dystonia (CD), neck pain and work-related upper limb disorder (WRULD) are the most common diseases in the cervical region. Headaches, stiffness, sensory disturbance to the legs and arms, optical problems, aching in the back and shoulder, and auditory and visual problems are common symptoms seen in patients with these diseases. CD patients may also suffer tormenting spasticity in some neck muscles, with the symptoms possibly being acute and persisting for a long time, sometimes a lifetime. Whiplash-associated disorders (WADs) may occur due to sudden forward and backward movements of the head and neck occurring during a sporting activity or vehicle or domestic accident. These diseases affect private industries, insurance companies and governments, with the socio-economic costs significantly related to work absences, long-term sick leave, early disability and disability support pensions, health care expenses, reduced productivity and insurance claims. Therefore, diagnosing and treating neck-related diseases are important issues in clinical practice. The reason for these afflictions resulting from accident is the impairment of the cervical muscles which undergo atrophy or pseudo-hypertrophy due to fat infiltrating into them. These morphological changes have to be determined by identifying and quantifying their bio-markers before applying any medical intervention. Volumetric studies of neck muscles are reliable indicators of the proper treatments to apply. Radiation therapy, chemotherapy, injection of a toxin or surgery could be possible ways of treating these diseases. However, the dosages required should be precise because the neck region contains some sensitive organs, such as nerves, blood vessels and the trachea and spinal cord. Image registration and deep learning-based segmentation can help to determine appropriate treatments by analyzing the neck muscles. However, this is a challenging task for medical images due to complexities such as many muscles crossing multiple joints and attaching to many bones. Also, their shapes and sizes vary greatly across populations whereas their cross-sectional areas (CSAs) do not change in proportion to the heights and weights of individuals, with their sizes varying more significantly between males and females than ages. Therefore, the neck's anatomical variabilities are much greater than those of other parts of the human body. Some other challenges which make analyzing neck muscles very difficult are their compactness, similar gray-level appearances, intra-muscular fat, sliding due to cardiac and respiratory motions, false boundaries created by intramuscular fat, low resolution and contrast in medical images, noise, inhomogeneity and background clutter with the same composition and intensity. Furthermore, a patient's mode, position and neck movements during the capture of an image create variability. However, very little significant research work has been conducted on analyzing neck muscles. Although previous image registration efforts form a strong basis for many medical applications, none can satisfy the requirements of all of them because of the challenges associated with their implementation and low accuracy which could be due to anatomical complexities and variabilities or the artefacts of imaging devices. In existing methods, multi-resolution- and heuristic-based methods are popular. However, the above issues cause conventional multi-resolution-based registration methods to be trapped in local minima due to their low degrees of freedom in their geometrical transforms. Although heuristic-based methods are good at handling large mismatches, they require pre-segmentation and are computationally expensive. Also, current deformable methods often face statistical instability problems and many local optima when dealing with small mismatches. On the other hand, deep learning-based methods have achieved significant success over the last few years. Although a deeper network can learn more complex features and yields better performances, its depth cannot be increased as this would cause the gradient to vanish during training and result in training difficulties. Recently, researchers have focused on attention mechanisms for deep learning but current attention models face a challenge in the case of an application with compact and similar small multiple classes, large variability, low contrast and noise. The focus of this dissertation is on the design of 3D-3D image registration approaches as well as deep learning-based semantic segmentation methods for analyzing neck muscles. In the first part of this thesis, a novel object-constrained hierarchical registration framework for aligning inter-subject neck muscles is proposed. Firstly, to handle large-scale local minima, it uses a coarse registration technique which optimizes a new edge position difference (EPD) similarity measure to align large mismatches. Also, a new transformation based on the discrete periodic spline wavelet (DPSW), affine and free-form-deformation (FFD) transformations are exploited. Secondly, to avoid the monotonous nature of using transformations in multiple stages, affine registration technique, which uses a double-pushing system by changing the edges in the EPD and switching the transformation's resolutions, is designed to align small mismatches. The EPD helps in both the coarse and fine techniques to implement object-constrained registration via controlling edges which is not possible using traditional similarity measures. Experiments are performed on clinical 3D magnetic resonance imaging (MRI) scans of the neck, with the results showing that the EPD is more effective than the mutual information (MI) and the sum of squared difference (SSD) measures in terms of the volumetric dice similarity coefficient (DSC). Also, the proposed method is compared with two state-of-the-art approaches with ablation studies of inter-subject deformable registration and achieves better accuracy, robustness and consistency. However, as this method is computationally complex and has a problem handling large-scale anatomical variabilities, another 3D-3D registration framework with two novel contributions is proposed in the second part of this thesis. Firstly, a two-stage heuristic search optimization technique for handling large mismatches,which uses a minimal user hypothesis regarding these mismatches and is computationally fast, is introduced. It brings a moving image hierarchically closer to a fixed one using MI and EPD similarity measures in the coarse and fine stages, respectively, while the images do not require pre-segmentation as is necessary in traditional heuristic optimization-based techniques. Secondly, a region of interest (ROI) EPD-based registration framework for handling small mismatches using salient anatomical information (AI), in which a convex objective function is formed through a unique shape created from the desired objects in the ROI, is proposed. It is compared with two state-of-the-art methods on a neck dataset, with the results showing that it is superior in terms of accuracy and is computationally fast. In the last part of this thesis, an evaluation study of recent U-Net-based convolutional neural networks (CNNs) is performed on a neck dataset. It comprises 6 recent models, the U-Net, U-Net with a conditional random field (CRF-Unet), attention U-Net (A-Unet), nested U-Net or U-Net++, multi-feature pyramid (MFP)-Unet and recurrent residual U-Net (R2Unet) and 4 with more comprehensive modifications, the multi-scale U-Net (MS-Unet), parallel multi-scale U-Net (PMSUnet), recurrent residual attention U-Net (R2A-Unet) and R2A-Unet++ in neck muscles segmentation, with analyses of the numerical results indicating that the R2Unet architecture achieves the best accuracy. Also, two deep learning-based semantic segmentation approaches are proposed. In the first, a new two-stage U-Net++ (TS-UNet++) uses two different types of deep CNNs (DCNNs) rather than one similar to the traditional multi-stage method, with the U-Net++ in the first stage and the U-Net in the second. More convolutional blocks are added after the input and before the output layers of the multi-stage approach to better extract the low- and high-level features. A new concatenation-based fusion structure, which is incorporated in the architecture to allow deep supervision, helps to increase the depth of the network without accelerating the gradient-vanishing problem. Then, more convolutional layers are added after each concatenation of the fusion structure to extract more representative features. The proposed network is compared with the U-Net, U-Net++ and two-stage U-Net (TS-UNet) on the neck dataset, with the results indicating that it outperforms the others. In the second approach, an explicit attention method, in which the attention is performed through a ROI evolved from ground truth via dilation, is proposed. It does not require any additional CNN, as does a cascaded approach, to localize the ROI. Attention in a CNN is sensitive with respect to the area of the ROI. This dilated ROI is more capable of capturing relevant regions and suppressing irrelevant ones than a bounding box and region-level coarse annotation, and is used during training of any CNN. Coarse annotation, which does not require any detailed pixel wise delineation that can be performed by any novice person, is used during testing. This proposed ROI-based attention method, which can handle compact and similar small multiple classes with objects with large variabilities, is compared with the automatic A-Unet and U-Net, and performs best

    ADVANCED MOTION MODELS FOR RIGID AND DEFORMABLE REGISTRATION IN IMAGE-GUIDED INTERVENTIONS

    Get PDF
    Image-guided surgery (IGS) has been a major area of interest in recent decades that continues to transform surgical interventions and enable safer, less invasive procedures. In the preoperative contexts, diagnostic imaging, including computed tomography (CT) and magnetic resonance (MR) imaging, offers a basis for surgical planning (e.g., definition of target, adjacent anatomy, and the surgical path or trajectory to the target). At the intraoperative stage, such preoperative images and the associated planning information are registered to intraoperative coordinates via a navigation system to enable visualization of (tracked) instrumentation relative to preoperative images. A major limitation to such an approach is that motions during surgery, either rigid motions of bones manipulated during orthopaedic surgery or brain soft-tissue deformation in neurosurgery, are not captured, diminishing the accuracy of navigation systems. This dissertation seeks to use intraoperative images (e.g., x-ray fluoroscopy and cone-beam CT) to provide more up-to-date anatomical context that properly reflects the state of the patient during interventions to improve the performance of IGS. Advanced motion models for inter-modality image registration are developed to improve the accuracy of both preoperative planning and intraoperative guidance for applications in orthopaedic pelvic trauma surgery and minimally invasive intracranial neurosurgery. Image registration algorithms are developed with increasing complexity of motion that can be accommodated (single-body rigid, multi-body rigid, and deformable) and increasing complexity of registration models (statistical models, physics-based models, and deep learning-based models). For orthopaedic pelvic trauma surgery, the dissertation includes work encompassing: (i) a series of statistical models to model shape and pose variations of one or more pelvic bones and an atlas of trajectory annotations; (ii) frameworks for automatic segmentation via registration of the statistical models to preoperative CT and planning of fixation trajectories and dislocation / fracture reduction; and (iii) 3D-2D guidance using intraoperative fluoroscopy. For intracranial neurosurgery, the dissertation includes three inter-modality deformable registrations using physic-based Demons and deep learning models for CT-guided and CBCT-guided procedures

    Deformable Medical Image Registration: A Survey

    Get PDF
    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this technical report, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this technical report is to provide an extensive account of registration techniques in a systematic manner.Le recalage déformable d'images est une des tâches les plus fondamentales dans l'imagerie médicale. Parmi ses applications les plus importantes, on compte: i) la fusion d' information provenant des différents types de modalités a n de faciliter le diagnostic et la planification du traitement; ii) les études longitudinales, oú des changements structurels ou anatomiques sont étudiées en fonction du temps; et iii) la modélisation de la variabilité anatomique normale d'une population et les atlas statistiques. Dans ce rapport de recherche, nous essayons de donner un aperçu des différentes méthodes du recalage déformables, en mettant l'accent sur les avancées les plus récentes du domaine. Nous avons particulièrement insisté sur les techniques appliquées aux images médicales. A n d'étudier les méthodes du recalage d'images, leurs composants principales sont d'abord identifiés puis étudiées de manière indépendante, les techniques les plus récentes étant classifiées en suivant un schéma logique déterminé. La contribution de ce rapport de recherche est de fournir un compte rendu détaillé des techniques de recalage d'une manière systématique
    corecore