102 research outputs found

    Analysis of Features for Synthetic Aperture Radar Target Classification

    Get PDF
    Considering two classes of vehicles, we aim to identify the physical elements of the vehicles with the most impact on identifying the class of the vehicle in synthetic aperture radar (SAR) images. We classify vehicles using features, from polarimetric SAR images, corresponding to the structure of physical elements. We demonstrate a method which determines the most impactful features to classification by applying subset selection on the features. Determination of the most impactful elements of the vehicles is beneficial to the development of low observables, target models, and automatic target recognition (ATR) algorithms. We show how previous work with features from individual pixels is applied to a greater number of target states. At a greater number of target states, the previous work has poor classification performance. Additionally, the nature of the features from pixels limits the identification of the most impactful elements of vehicles. We apply concepts from optical sensing to reduce the limitation on identification of physical elements. We draw from optical sensing feature extraction with the use of Histogram of Oriented Gradients (HOG). From the cells of HOG, we form features from frequency and polarization attributes of SAR images. Using a subset set of features, we achieve a classification performance of 96.10 percent correct classification. Using the features from HOG and the cells, we identify the features with the most impact. Using backward selection, a process for subset selection, we identify the features with the most impact to classification. The execution of backward selection removes the features which induce the most error

    Automated High-resolution Earth Observation Image Interpretation: Outcome of the 2020 Gaofen Challenge

    Get PDF
    In this article, we introduce the 2020 Gaofen Challenge and relevant scientific outcomes. The 2020 Gaofen Challenge is an international competition, which is organized by the China High-Resolution Earth Observation Conference Committee and the Aerospace Information Research Institute, Chinese Academy of Sciences and technically cosponsored by the IEEE Geoscience and Remote Sensing Society and the International Society for Photogrammetry and Remote Sensing. It aims at promoting the academic development of automated high-resolution earth observation image interpretation. Six independent tracks have been organized in this challenge, which cover the challenging problems in the field of object detection and semantic segmentation. With the development of convolutional neural networks, deep-learning-based methods have achieved good performance on image interpretation. In this article, we report the details and the best-performing methods presented so far in the scope of this challenge

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    The Polarimetric Detection Optimization Filter and Its Statistical Test for Ship Detection

    Get PDF
    Ship detection via synthetic aperture radar (SAR) has been demonstrated to be very useful as polarimetric information helps discriminate between targets and sea clutter. Among the available polarimetric detectors, optimal polarimetric detection (OPD) theoretically provides the best detection performance under the assumption that the fully developed speckle hypothesis stands. This study proposes a polarimetric detection optimization filter (PDOF). The target clutter ratio (TCR) over the speckle variation was maximized using a matrix transform to derive the PDOF. The objective function based on a matrix transform instead of a vector transform is optimized to obtain synthetic effects by combining a polarimetric whitening filter (PWF) and a polarimetric matched filter (PMF). Subspace form of the PDOF (SPDOF) is also proposed, which gives performance comparable to the PDOF. Assuming a Wishart distribution, the exact and approximate expressions of the closed-form probability density function (PDF) of the PDOF are derived. The probability of false alarm (PFA) was derived in a closed-form expression, which allows obtaining the PDOF threshold analytically. Moreover, the gamma model is extended to a generalized gamma distribution (GΓD) to adapt complicated resolutions and sea states. Experiments with simulated and real data validate the correctness and effectiveness of the results. The PDOF detector achieves the best performance in most virtual and real-world environments, especially in cases where the target statistics and clutter are not Wishart-distributed

    PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance Matrix

    Get PDF
    The detection of small ships in polarimetric synthetic aperture radar (PolSAR) images is still a topic for further investigation. Recently, patch detection techniques, such as superpixel-level detection, have stimulated wide interest because they can use the information contained in similarities among neighboring pixels. In this article, we propose a novel neighborhood polarimetric covariance matrix (NPCM) to detect the small ships in PolSAR images, leading to a significant improvement in the separability between ship targets and sea clutter. The NPCM utilizes the spatial correlation between neighborhood pixels and maps the representation for a given pixel into a high-dimensional covariance matrix by embedding spatial and polarization information. Using the NPCM formalism, we apply a standard whitening filter, similar to the polarimetric whitening filter (PWF). We show how the inclusion of neighborhood information improves the performance compared with the traditional polarimetric covariance matrix. However, this is at the expense of a higher computation cost. The theory is validated via the simulated and measured data under different sea states and using different radar platforms

    A New Form of the Polarimetric Notch Filter

    Get PDF
    Ship detection using polarimetric synthetic radar (PolSAR) imagery attracts a lot of attention in recent years. Most notably, the detector polarimetric notch filter (PNF) has been demonstrated to be effective for ship detection in PolSAR imagery, which gives excellent performances. In this work, a mathematical form of one new PNF (NPNF) based on physical mechanisms of targets and clutter is further developed for partial targets. The different mechanisms have been revealed based on the projection matrix. The experimental results including simulated and measured data demonstrate that the NPNF exhibits a better performance than the original PNF

    Two-Phase Object-Based Deep Learning for Multi-Temporal SAR Image Change Detection

    Get PDF
    Change detection is one of the fundamental applications of synthetic aperture radar (SAR) images. However, speckle noise presented in SAR images has a negative effect on change detection, leading to frequent false alarms in the mapping products. In this research, a novel two-phase object-based deep learning approach is proposed for multi-temporal SAR image change detection. Compared with traditional methods, the proposed approach brings two main innovations. One is to classify all pixels into three categories rather than two categories: unchanged pixels, changed pixels caused by strong speckle (false changes), and changed pixels formed by real terrain variation (real changes). The other is to group neighbouring pixels into superpixel objects such as to exploit local spatial context. Two phases are designed in the methodology: (1) Generate objects based on the simple linear iterative clustering (SLIC) algorithm, and discriminate these objects into changed and unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. The prediction of this Phase is the set of changed and unchanged superpixels. (2) Deep learning on the pixel sets over the changed superpixels only, obtained in the first phase, to discriminate real changes from false changes. SLIC is employed again to achieve new superpixels in the second phase. Low rank and sparse decomposition are applied to these new superpixels to suppress speckle noise significantly. A further clustering step is applied to these new superpixels via FCM. A new PCANet is then trained to classify two kinds of changed superpixels to achieve the final change maps. Numerical experiments demonstrate that, compared with benchmark methods, the proposed approach can distinguish real changes from false changes effectively with significantly reduced false alarm rates, and achieve up to 99.71% change detection accuracy using multi-temporal SAR imagery

    Ship detection on open sea and coastal environment

    Get PDF
    Synthetic Aperture Radar (SAR) is a high-resolution ground-mapping technique with the ability to effectively synthesize a large radar antenna by processing the phase of a smaller radar antenna on a moving platform like an airplane or a satellite. SAR images, due to its properties, have been the focus of many applications such as land and sea monitoring, remote sensing, mapping of surfaces, weather forecasting, among many others. Their relevance is increasing on a daily basis, thus it’s crucial to apply the best suitable method or technique to each type of data collected. Several techniques have been published in the literature so far to enhance automatic ship detection using Synthetic Aperture Radar (SAR) images, like multilook imaging techniques, polarization techniques, Constant False Alarm Rate (CFAR) techniques, Amplitude Change Detection (ACD) techniques among many others. Depending on how the information is gathered and processed, each technique presents different performance and results. Nowadays there are several ongoing SAR missions, and the need to improve ship detection, oil-spills or any kind of sea activity is fundamental to preserve and promote navigation safety as well as constant and accurate monitoring of the surroundings, for example, detection of illegal fishing activities, pollution or drug trafficking. The main objective of this MSc dissertation is to study and implement a set of algorithms for automatic ship detection using SAR images from Sentinel-1 due to its characteristics as well as its ease access. The dissertation organization is as follows: Chapter 1 presents a brief introduction to the theme of this dissertation and its aim, as well as its structure; Chapter 2 summarizes a variety of fundamental key points from historical events and developments to the SAR theory, finishing with a summary of some well-known ship detection methods; Chapter 3 presents a basic guideline to choose the best ship detection technique depending on the data type and operational scenario; Chapter 4 focus on the CFAR technique detailing the implemented algorithms. This technique was selected, given the data set available for testing in this work; Chapter 5 presents the results obtained using the implemented algorithms; Chapter 6 presents the conclusions, final remarks and future work
    • …
    corecore