347 research outputs found

    Visual Saliency Based on Multiscale Deep Features

    Get PDF
    Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this CVPR 2015 paper, we discover that a high-quality visual saliency model can be trained with multiscale features extracted using a popular deep learning architecture, convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for extracting features at three different scales. We then propose a refinement method to enhance the spatial coherence of our saliency results. Finally, aggregating multiple saliency maps computed for different levels of image segmentation can further boost the performance, yielding saliency maps better than those generated from a single segmentation. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotation. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks, improving the F-Measure by 5.0% and 13.2% respectively on the MSRA-B dataset and our new dataset (HKU-IS), and lowering the mean absolute error by 5.7% and 35.1% respectively on these two datasets.Comment: To appear in CVPR 201

    A brief survey of visual saliency detection

    Get PDF

    Multi-focus image fusion using maximum symmetric surround saliency detection

    Get PDF
    In digital photography, two or more objects of a scene cannot be focused at the same time. If we focus one object, we may lose information about other objects and vice versa. Multi-focus image fusion is a process of generating an all-in-focus image from several out-of-focus images. In this paper, we propose a new multi-focus image fusion method based on two-scale image decomposition and saliency detection using maximum symmetric surround. This method is very beneficial because the saliency map used in this method can highlight the saliency information present in the source images with well defined boundaries. A weight map construction method based on saliency information is developed in this paper. This weight map can identify the focus and defocus regions present in the image very well. So we implemented a new fusion algorithm based on weight map which integrate only focused region information into the fused image. Unlike multi-scale image fusion methods, in this method two-scale image decomposition is sufficient. So, it is computationally efficient. Proposed method is tested on several multi-focus image datasets and it is compared with traditional and recently proposed fusion methods using various fusion metrics. Results justify that our proposed method gives stable and promising performance when compared to that of the existing methods
    corecore