1,822 research outputs found

    A computational model of visual attention.

    Get PDF
    Visual attention is a process by which the Human Visual System (HVS) selects most important information from a scene. Visual attention models are computational or mathematical models developed to predict this information. The performance of the state-of-the-art visual attention models is limited in terms of prediction accuracy and computational complexity. In spite of significant amount of active research in this area, modelling visual attention is still an open research challenge. This thesis proposes a novel computational model of visual attention that achieves higher prediction accuracy with low computational complexity. A new bottom-up visual attention model based on in-focus regions is proposed. To develop the model, an image dataset is created by capturing images with in-focus and out-of-focus regions. The Discrete Cosine Transform (DCT) spectrum of these images is investigated qualitatively and quantitatively to discover the key frequency coefficients that correspond to the in-focus regions. The model detects these key coefficients by formulating a novel relation between the in-focus and out-of-focus regions in the frequency domain. These frequency coefficients are used to detect the salient in-focus regions. The simulation results show that this attention model achieves good prediction accuracy with low complexity. The prediction accuracy of the proposed in-focus visual attention model is further improved by incorporating sensitivity of the HVS towards the image centre and the human faces. Moreover, the computational complexity is further reduced by using Integer Cosine Transform (ICT). The model is parameter tuned using the hill climbing approach to optimise the accuracy. The performance has been analysed qualitatively and quantitatively using two large image datasets with eye tracking fixation ground truth. The results show that the model achieves higher prediction accuracy with a lower computational complexity compared to the state-of-the-art visual attention models. The proposed model is useful in predicting human fixations in computationally constrained environments. Mainly it is useful in applications such as perceptual video coding, image quality assessment, object recognition and image segmentation

    Perceptual modelling for 2D and 3D

    Get PDF
    Livrable D1.1 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D1.1 du projet

    Low-complexity motion-based saliency map estimation for perceptual video coding

    Get PDF
    Proceeding of: 2nd National Conference on Telecommunications (CONATEL), Arequipa, 17-20 May 2011In this paper, a low-complexity motion-based saliency map estimation method for perceptual video coding is proposed. The method employs a camera motion compensated vector map computed by means of a hierarchical motion estimation (HME) procedure and a Restricted Affine Transformation (RAT)-based modeling of the camera motion. To allow for a computationally efficient solution, the number of layers of the HME has been restricted and the potential unreliable motion vectors due to homogeneous regions have been detected and specially managed by means of a smooth block detector. Special care has been taken of the smoothness of the resulting compensated camera motion vector map to avoid unpleasant artifacts in the perceptually-coded sequence, by including a final post-processing based on morphological filtering. The proposed saliency map has been both visually and subjectively assessed showing quality improvements when used as a part of the H.264/AVC standard codec at medium-to-low bitrates.Regional project CCG10-UC3M/TIC-5570 from Comunidad AutĂłnoma de Madrid / University Carlos III MadridPublicad

    Full Reference Objective Quality Assessment for Reconstructed Background Images

    Full text link
    With an increased interest in applications that require a clean background image, such as video surveillance, object tracking, street view imaging and location-based services on web-based maps, multiple algorithms have been developed to reconstruct a background image from cluttered scenes. Traditionally, statistical measures and existing image quality techniques have been applied for evaluating the quality of the reconstructed background images. Though these quality assessment methods have been widely used in the past, their performance in evaluating the perceived quality of the reconstructed background image has not been verified. In this work, we discuss the shortcomings in existing metrics and propose a full reference Reconstructed Background image Quality Index (RBQI) that combines color and structural information at multiple scales using a probability summation model to predict the perceived quality in the reconstructed background image given a reference image. To compare the performance of the proposed quality index with existing image quality assessment measures, we construct two different datasets consisting of reconstructed background images and corresponding subjective scores. The quality assessment measures are evaluated by correlating their objective scores with human subjective ratings. The correlation results show that the proposed RBQI outperforms all the existing approaches. Additionally, the constructed datasets and the corresponding subjective scores provide a benchmark to evaluate the performance of future metrics that are developed to evaluate the perceived quality of reconstructed background images.Comment: Associated source code: https://github.com/ashrotre/RBQI, Associated Database: https://drive.google.com/drive/folders/1bg8YRPIBcxpKIF9BIPisULPBPcA5x-Bk?usp=sharing (Email for permissions at: ashrotreasuedu

    Attentive monitoring of multiple video streams driven by a Bayesian foraging strategy

    Full text link
    In this paper we shall consider the problem of deploying attention to subsets of the video streams for collating the most relevant data and information of interest related to a given task. We formalize this monitoring problem as a foraging problem. We propose a probabilistic framework to model observer's attentive behavior as the behavior of a forager. The forager, moment to moment, focuses its attention on the most informative stream/camera, detects interesting objects or activities, or switches to a more profitable stream. The approach proposed here is suitable to be exploited for multi-stream video summarization. Meanwhile, it can serve as a preliminary step for more sophisticated video surveillance, e.g. activity and behavior analysis. Experimental results achieved on the UCR Videoweb Activities Dataset, a publicly available dataset, are presented to illustrate the utility of the proposed technique.Comment: Accepted to IEEE Transactions on Image Processin
    • …
    corecore