13 research outputs found

    The complexity of approximations for epistemic synthesis (extended abstract)

    Full text link
    Epistemic protocol specifications allow programs, for settings in which multiple agents act with incomplete information, to be described in terms of how actions are related to what the agents know. They are a variant of the knowledge-based programs of Fagin et al [Distributed Computing, 1997], motivated by the complexity of synthesizing implementations in that framework. The paper proposes an approach to the synthesis of implementations of epistemic protocol specifications, that reduces the problem of finding an implementation to a sequence of model checking problems in approximations of the ultimate system being synthesized. A number of ways to construct such approximations is considered, and these are studied for the complexity of the associated model checking problems. The outcome of the study is the identification of the best approximations with the property of being PTIME implementable.Comment: In Proceedings SYNT 2015, arXiv:1602.0078

    A Backward-traversal-based Approach for Symbolic Model Checking of Uniform Strategies for Constrained Reachability

    Full text link
    Since the introduction of Alternating-time Temporal Logic (ATL), many logics have been proposed to reason about different strategic capabilities of the agents of a system. In particular, some logics have been designed to reason about the uniform memoryless strategies of such agents. These strategies are the ones the agents can effectively play by only looking at what they observe from the current state. ATL_ir can be seen as the core logic to reason about such uniform strategies. Nevertheless, its model-checking problem is difficult (it requires a polynomial number of calls to an NP oracle), and practical algorithms to solve it appeared only recently. This paper proposes a technique for model checking uniform memoryless strategies. Existing techniques build the strategies from the states of interest, such as the initial states, through a forward traversal of the system. On the other hand, the proposed approach builds the winning strategies from the target states through a backward traversal, making sure that only uniform strategies are explored. Nevertheless, building the strategies from the ground up limits its applicability to constrained reachability objectives only. This paper describes the approach in details and compares it experimentally with existing approaches implemented into a BDD-based framework. These experiments show that the technique is competitive on the cases it can handle.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    Comparing approaches for model-checking strategies under imperfect information and fairness constraints

    Get PDF
    Starting from Alternating-time Temporal Logic, many logics for reasoning about strategies in a system of agents have been proposed. Some of them consider the strategies that agents can play when they have partial information about the state of the system. ATLKirF is such a logic to reason about uniform strategies under unconditional fairness constraints. While this kind of logics has been extensively studied, practical approaches for solving their model- checking problem appeared only recently. This paper considers three approaches for model checking strategies under partial observability of the agents, applied to ATLKirF . These three approaches have been implemented in PyNuSMV, a Python library based on the state-of- the-art model checker NuSMV. Thanks to the experimental results obtained with this library and thanks to the comparison of the relative performance of the approaches, this paper provides indications and guidelines for the use of these verification techniques, showing that different approaches are needed in different situations

    Formal Methods for Autonomous Systems

    Full text link
    Formal methods refer to rigorous, mathematical approaches to system development and have played a key role in establishing the correctness of safety-critical systems. The main building blocks of formal methods are models and specifications, which are analogous to behaviors and requirements in system design and give us the means to verify and synthesize system behaviors with formal guarantees. This monograph provides a survey of the current state of the art on applications of formal methods in the autonomous systems domain. We consider correct-by-construction synthesis under various formulations, including closed systems, reactive, and probabilistic settings. Beyond synthesizing systems in known environments, we address the concept of uncertainty and bound the behavior of systems that employ learning using formal methods. Further, we examine the synthesis of systems with monitoring, a mitigation technique for ensuring that once a system deviates from expected behavior, it knows a way of returning to normalcy. We also show how to overcome some limitations of formal methods themselves with learning. We conclude with future directions for formal methods in reinforcement learning, uncertainty, privacy, explainability of formal methods, and regulation and certification

    Comparing approaches for model-checking strategies under imperfect information and fairness constraints

    Get PDF
    Starting from Alternating-time Temporal Logic, many logics for reasoning about strategies in a system of agents have been proposed. Some of them consider the strategies that agents can play when they have partial information about the state of the system. ATLKirF is such a logic to reason about uniform strategies under unconditional fairness constraints. While this kind of logics has been extensively studied, practical approaches for solving their model- checking problem appeared only recently. This paper considers three approaches for model checking strategies under partial observability of the agents, applied to ATLKirF . These three approaches have been implemented in PyNuSMV, a Python library based on the state-of- the-art model checker NuSMV. Thanks to the experimental results obtained with this library and thanks to the comparison of the relative performance of the approaches, this paper provides indications and guidelines for the use of these verification techniques, showing that different approaches are needed in different situations

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field
    corecore