990 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Language integrated relational lenses

    Get PDF
    Relational databases are ubiquitous. Such monolithic databases accumulate large amounts of data, yet applications typically only work on small portions of the data at a time. A subset of the database defined as a computation on the underlying tables is called a view. Querying views is helpful, but it is also desirable to update them and have these changes be applied to the underlying database. This view update problem has been the subject of much previous work before, but support by database servers is limited and only rarely available. Lenses are a popular approach to bidirectional transformations, a generalization of the view update problem in databases to arbitrary data. However, perhaps surprisingly, lenses have seldom actually been used to implement updatable views in databases. Bohannon, Pierce and Vaughan propose an approach to updatable views called relational lenses. However, to the best of our knowledge this proposal has not been implemented or evaluated prior to the work reported in this thesis. This thesis proposes programming language support for relational lenses. Language integrated relational lenses support expressive and efficient view updates, without relying on updatable view support from the database server. By integrating relational lenses into the programming language, application development becomes easier and less error-prone, avoiding the impedance mismatch of having two programming languages. Integrating relational lenses into the language poses additional challenges. As defined by Bohannon et al. relational lenses completely recompute the database, making them inefficient as the database scales. The other challenge is that some parts of the well-formedness conditions are too general for implementation. Bohannon et al. specify predicates using possibly infinite abstract sets and define the type checking rules using relational algebra. Incremental relational lenses equip relational lenses with change-propagating semantics that map small changes to the view into (potentially) small changes to the source tables. We prove that our incremental semantics are functionally equivalent to the non-incremental semantics, and our experimental results show orders of magnitude improvement over the non-incremental approach. This thesis introduces a concrete predicate syntax and shows how the required checks are performed on these predicates and show that they satisfy the abstract predicate specifications. We discuss trade-offs between static predicates that are fully known at compile time vs dynamic predicates that are only known during execution and introduce hybrid predicates taking inspiration from both approaches. This thesis adapts the typing rules for relational lenses from sequential composition to a functional style of sub-expressions. We prove that any well-typed functional relational lens expression can derive a well-typed sequential lens. We use these additions to relational lenses as the foundation for two practical implementations: an extension of the Links functional language and a library written in Haskell. The second implementation demonstrates how type-level computation can be used to implement relational lenses without changes to the compiler. These two implementations attest to the possibility of turning relational lenses into a practical language feature

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    Frivolous Floodgate Fears

    Get PDF
    When rejecting plaintiff-friendly liability standards, courts often cite a fear of opening the floodgates of litigation. Namely, courts point to either a desire to protect the docket of federal courts or a burden on the executive branch. But there is little empirical evidence exploring whether the adoption of a stricter standard can, in fact, decrease the filing of legal claims in this circumstance. This Article empirically analyzes and theoretically models the effect of adopting arguably stricter liability standards on litigation by investigating the context of one of the Supreme Court’s most recent reliances on this argument when adopting a stricter liability standard for causation in employment discrimination claims. In 2013, the Supreme Court held that a plaintiff proving retaliation under Title VII of the Civil Rights Act must prove that their participation in a protected activity was a but-for cause of the adverse employment action they experienced. Rejecting the arguably more plaintiff-friendly motivating-factor standard, the Court stated, “[L]essening the causation standard could also contribute to the filing of frivolous claims, which would siphon resources from efforts by employer[s], administrative agencies, and courts to combat workplace harassment.” Univ. of Tex. Sw. Med. Ctr. v. Nassar, 570 U.S. 338, 358 (2013). And over the past ten years, the Court has overturned the application of motivating-factor causation as applied to at least four different federal antidiscrimination statutes. Contrary to the Supreme Court’s concern that motivating-factor causation encourages frivolous charges, many employment law scholars worry that the heightened but-for standard will deter legitimate claims. This Article empirically explores these concerns, in part using data received from the Equal Employment Opportunity Commission (EEOC) through a Freedom of Information Act (FOIA) request. Specifically, it empirically tests whether the adoption of the but-for causation standard for claims filed under the Age Discrimination in Employment Act and by federal courts of appeals under the Americans with Disabilities Act has impacted the filing of discrimination claims and the outcome of those claims in federal court. Consistent with theory detailed in this Article, the empirical analysis provides evidence that the stricter standard may have increased the docket of the federal courts by decreasing settlement within the EEOC and during litigation. The empirical results weigh in on concerns surrounding the adoption of the but-for causation standard and provide evidence that the floodgates argument, when relied on to deter frivolous filings by changing liability standards, in fact, may do just the opposite by decreasing the likelihood of settlement in the short term, without impacting the filing of claims or other case outcomes

    Taylor University Catalog 2023-2024

    Get PDF
    The 2023-2024 academic catalog of Taylor University in Upland, Indiana.https://pillars.taylor.edu/catalogs/1128/thumbnail.jp

    Interdisciplinarity in the Scholarly Life Cycle

    Get PDF
    This open access book illustrates how interdisciplinary research develops over the lifetime of a scholar: not in a single project, but as an attitude that trickles down, or spirals up, into research. This book presents how interdisciplinary work has inspired shifts in how the contributors read, value concepts, critically combine methods, cope with knowledge hierarchies, write in style, and collaborate. Drawing on extensive examples from the humanities and social sciences, the editors and chapter authors show how they started, tried to open up, dealt with inconsistencies, had to adapt, and ultimately learned and grew as researchers. The book offers valuable insights into the conditions and complexities present for interdisciplinary research to be successful in an academic setting. This is an open access book

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Computational and human-based methods for knowledge discovery over knowledge graphs

    Get PDF
    The modern world has evolved, accompanied by the huge exploitation of data and information. Daily, increasing volumes of data from various sources and formats are stored, resulting in a challenging strategy to manage and integrate them to discover new knowledge. The appropriate use of data in various sectors of society, such as education, healthcare, e-commerce, and industry, provides advantages for decision support in these areas. However, knowledge discovery becomes challenging since data may come from heterogeneous sources with important information hidden. Thus, new approaches that adapt to the new challenges of knowledge discovery in such heterogeneous data environments are required. The semantic web and knowledge graphs (KGs) are becoming increasingly relevant on the road to knowledge discovery. This thesis tackles the problem of knowledge discovery over KGs built from heterogeneous data sources. We provide a neuro-symbolic artificial intelligence system that integrates symbolic and sub-symbolic frameworks to exploit the semantics encoded in a KG and its structure. The symbolic system relies on existing approaches of deductive databases to make explicit, implicit knowledge encoded in a KG. The proposed deductive database DSDS can derive new statements to ego networks given an abstract target prediction. Thus, DSDS minimizes data sparsity in KGs. In addition, a sub-symbolic system relies on knowledge graph embedding (KGE) models. KGE models are commonly applied in the KG completion task to represent entities in a KG in a low-dimensional vector space. However, KGE models are known to suffer from data sparsity, and a symbolic system assists in overcoming this fact. The proposed approach discovers knowledge given a target prediction in a KG and extracts unknown implicit information related to the target prediction. As a proof of concept, we have implemented the neuro-symbolic system on top of a KG for lung cancer to predict polypharmacy treatment effectiveness. The symbolic system implements a deductive system to deduce pharmacokinetic drug-drug interactions encoded in a set of rules through the Datalog program. Additionally, the sub-symbolic system predicts treatment effectiveness using a KGE model, which preserves the KG structure. An ablation study on the components of our approach is conducted, considering state-of-the-art KGE methods. The observed results provide evidence for the benefits of the neuro-symbolic integration of our approach, where the neuro-symbolic system for an abstract target prediction exhibits improved results. The enhancement of the results occurs because the symbolic system increases the prediction capacity of the sub-symbolic system. Moreover, the proposed neuro-symbolic artificial intelligence system in Industry 4.0 (I4.0) is evaluated, demonstrating its effectiveness in determining relatedness among standards and analyzing their properties to detect unknown relations in the I4.0KG. The results achieved allow us to conclude that the proposed neuro-symbolic approach for an abstract target prediction improves the prediction capability of KGE models by minimizing data sparsity in KGs
    • 

    corecore