15,309 research outputs found

    Testing Method for Multi-UAV Conflict Resolution Using Agent-Based Simulation and Multi-Objective Search

    Get PDF
    A new approach to testing multi-UAV conflict resolution algorithms is presented. The problem is formulated as a multi-objective search problem with two objectives: finding air traffic encounters that 1) are able to reveal faults in conflict resolution algorithms and 2) are likely to happen in the real world. The method uses agent-based simulation and multi-objective search to automatically find encounters satisfying these objectives. It describes pairwise encounters in three-dimensional space using a parameterized geometry representation, which allows encounters involving multiple UAVs to be generated by combining several pairwise encounters. The consequences of the encounters, given the conflict resolution algorithm, are explored using a fast-time agent-based simulator. To find encounters meeting the two objectives, a genetic algorithm approach is used. The method is applied to test ORCA-3D, a widely cited open-source multi-UAV conflict resolution algorithm, and the method’s performance is compared with a plausible random testing approach. The results show that the method can find the required encounters more efficiently than the random search. The identified safety incidents are then the starting points for understanding limitations of the conflict resolution algorithm

    Simulation-Based Evolutionary Optimization of Air Traffic Management

    Get PDF
    In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management (ATM), the optimization of procedures and protocols becomes even more complicated, due to the involve-ment of human controllers, which act as final decision points in the control chain. In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling and Simulation (ABMS)and Evolutionary Computing (EC), to design a simulation-based distributed architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic regulations. We present experimental results which prove the viability of our approach, comparing them with real-world data traces, and proving their meaningfulness from an Air Traffic Control perspective

    On the Validation of a UAV Collision Avoidance System Developed by Model-Based Optimization: : Challenges and a Tentative Partial Solution

    Get PDF
    The development of the new generation of airborne collision avoidance system ACAS X adopts a model-based optimization approach, where the collision avoidance logic is automatically generated based on a probabilistic model and a set of preferences. It has the potential for safety benefits and shortening the development cycle, but it poses new challenges for safety assurance. In this paper, we introduce the new development process and explain its key ideas using a simple collision avoidance example. Based on this explanation, we analyze the challenges it poses to safety assurance, with a particular focus on system validation. We then propose a Genetic-Algorithm-based approach that can efficiently search for undesired situations to help the development and validation of the system. We introduce an open-source tool we have developed to support this approach and demonstrate it on searching for challenging situations for ACAS XU

    Strategies for multiobjective genetic algorithm development: Application to optimal batch plant design in process systems engineering

    Get PDF
    This work deals with multiobjective optimization problems using Genetic Algorithms (GA). A MultiObjective GA (MOGA) is proposed to solve multiobjective problems combining both continuous and discrete variables. This kind of problem is commonly found in chemical engineering since process design and operability involve structural and decisional choices as well as the determination of operating conditions. In this paper, a design of a basic MOGA which copes successfully with a range of typical chemical engineering optimization problems is considered and the key points of its architecture described in detail. Several performance tests are presented, based on the influence of bit ranging encoding in a chromosome. Four mathematical functions were used as a test bench. The MOGA was able to find the optimal solution for each objective function, as well as an important number of Pareto optimal solutions. Then, the results of two multiobjective case studies in batch plant design and retrofit were presented, showing the flexibility and adaptability of the MOGA to deal with various engineering problems

    Testing Autonomous Robot Control Software Using Procedural Content Generation

    Get PDF
    We present a novel approach for reducing manual effort when testing autonomous robot control algorithms. We use procedural content generation, as developed for the film and video game industries, to create a diverse range of test situations. We execute these in the Player/Stage robot simulator and automatically rate them for their safety significance using an event-based scoring system. Situations exhibiting dangerous behaviour will score highly, and are thus flagged for the attention of a safety engineer. This process removes the time-consuming tasks of hand-crafting and monitoring situations while testing an autonomous robot control algorithm. We present a case study of the proposed approach – we generated 500 randomised situations, and our prototype tool simulated and rated them. We have analysed the three highest rated situations in depth, and this analysis revealed weaknesses in the smoothed nearness-diagram control algorithm

    21st Century Simulation: Exploiting High Performance Computing and Data Analysis

    Get PDF
    This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in computing power. This has been characterized as a ten-year lead over the use of single-processor computers. Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power. JFCOM's JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The challenges facing the defense analyst today have grown to include the need to consider operations among non-combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-combatants, and to understand non-linear, asymmetric warfare. These requirements stretch both current computational techniques and data analysis methodologies. In this paper, documented examples and potential solutions will be advanced. The authors discuss the paths to successful implementation based on their experience. Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch, database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses. The modeling and simulation community has significant potential to provide more opportunities for training and analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights, for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses. The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success

    Supporting Validation of UAV Sense-and-Avoid Algorithms with Agent-Based Simulation and Evolutionary Search

    Get PDF
    A Sense-and-Avoid (SAA) capability is required for the safe integration of Unmanned Aerial Vehicles (UAVs) into civilian airspace. Given their safety-critical nature, SAA algorithms must undergo rigorous verification and validation before deployment. The validation of UAV SAA algorithms requires identifying challenging situations that the algorithms have difficulties in handling. By building on ideas from Search-Based Software Testing, this thesis proposes an evolutionary-search-based approach that automatically identifies such situations to support the validation of SAA algorithms. Specifically, in the proposed approach, the behaviours of UAVs under the control of selected SAA algorithms are examined with agent-based simulations. Evolutionary search is used to guide the simulations to focus on increasingly challenging situations in a large search space defined by (the variations of) parameters that configure the simulations. An open-source tool has been developed to support the proposed approach so that the process can be partially automated. Positive results were achieved in a preliminary evaluation of the proposed approach using a simple two-dimensional SAA algorithm. The proposed approach was then further demonstrated and evaluated using two case studies, applying it to a prototype of an industry-level UAV collision avoidance algorithm (specifically, ACAS XU) and a multi-UAV conflict resolution algorithm (specifically, ORCA-3D). In the case studies, the proposed evolutionary-search-based approach was empirically compared with some plausible rivals (specifically, random-search-based approaches and a deterministic-global-search-based approach). The results show that the proposed approach can identify the required challenging situations more effectively and efficiently than the random-search-based approaches. The results also show that even though the proposed approach is a little less competitive than the deterministic-global-search-based approach in terms of effectiveness in relatively easy cases, it is more effective and efficient in more difficult cases, especially when the objective function becomes highly discontinuous. Thus, the proposed evolutionary-search-based approach has the potential to be used for supporting the validation of UAV SAA algorithms although it is not possible to show that it is the best approach

    Natural computing for vehicular networks

    Get PDF
    La presente tesis aborda el diseño inteligente de soluciones para el despliegue de redes vehiculares ad-hoc (vehicular ad hoc networks, VANETs). Estas son redes de comunicación inalámbrica formada principalmente por vehículos y elementos de infraestructura vial. Las VANETs ofrecen la oportunidad para desarrollar aplicaciones revolucionarias en el ámbito de la seguridad y eficiencia vial. Al ser un dominio tan novedoso, existe una serie de cuestiones abiertas, como el diseño de la infraestructura de estaciones base necesaria y el encaminamiento (routing) y difusión (broadcasting) de paquetes de datos, que todavía no han podido resolverse empleando estrategias clásicas. Es por tanto necesario crear y estudiar nuevas técnicas que permitan de forma eficiente, eficaz, robusta y flexible resolver dichos problemas. Este trabajo de tesis doctoral propone el uso de computación inspirada en la naturaleza o Computación Natural (CN) para tratar algunos de los problemas más importantes en el ámbito de las VANETs, porque representan una serie de algoritmos versátiles, flexibles y eficientes para resolver problemas complejos. Además de resolver los problemas VANET en los que nos enfocamos, se han realizado avances en el uso de estas técnicas para que traten estos problemas de forma más eficiente y eficaz. Por último, se han llevado a cabo pruebas reales de concepto empleando vehículos y dispositivos de comunicación reales en la ciudad de Málaga (España). La tesis se ha estructurado en cuatro grandes fases. En la primera fase, se han estudiado los principales fundamentos en los que se basa esta tesis. Para ello se hizo un estudio exhaustivo sobre las tecnologías que emplean las redes vehiculares, para así, identificar sus principales debilidades. A su vez, se ha profundizado en el análisis de la CN como herramienta eficiente para resolver problemas de optimización complejos, y de cómo utilizarla en la resolución de los problemas en VANETs. En la segunda fase, se han abordado cuatro problemas de optimización en redes vehiculares: la transferencia de archivos, el encaminamiento (routing) de paquetes, la difusión (broadcasting) de mensajes y el diseño de la infraestructura de estaciones base necesaria para desplegar redes vehiculares. Para la resolución de dichos problemas se han propuesto diferentes algoritmos CN que se clasifican en algoritmos evolutivos (evolutionary algorithms, EAs), métodos de inteligencia de enjambre (swarm intelligence, SI) y enfriamiento simulado (simulated annealing, SA). Los resultados obtenidos han proporcionado protocolos de han mejorado de forma significativa las comunicaciones en VANETs. En la tercera y última fase, se han realizado experimentos empleando vehículos reales circulando por las carreteras de Málaga y que se comunicaban entre sí. El principal objetivo de estas pruebas ha sido el validar las mejoras que presentan los protocolos que se han optimizado empleando CN. Los resultados obtenidos de las fases segunda y tercera confirman la hipótesis de trabajo, que la CN es una herramienta eficiente para tratar el diseño inteligente en redes vehiculares
    corecore