20,409 research outputs found

    Modelling of stochastic hybrid systems with applications to accident risk assessment

    Get PDF
    Stochastic dynamical modelling of accident risk is of high interest for the safe design of complex safety-critical systems and operations, such as in nuclear and chemical industries, and advanced air traffic management. In comparison with statistical analysis of collected data, stochastic dynamical modelling approach has the advantage of enabling the use of stochastic analysis and advanced Monte Carlo simulation approaches

    A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

    Get PDF
    This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method

    A general formulation for fault detection in stochastic continuous-time dynamical systems

    Get PDF
    In this work, a general formulation for fault detection in stochastic continuoustime dynamical systems is presented. This formulation is based on the definition of a pre-Hilbert space so that orthogonal projection techniques, based on the statistics of the involved stochastic processes can be applied. The general setting gathers different existing schemes within a unifying framework

    Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems

    Get PDF
    Learning-based control algorithms require data collection with abundant supervision for training. Safe exploration algorithms ensure the safety of this data collection process even when only partial knowledge is available. We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained stochastic optimal control with dynamics learning and feedback control. We derive an iterative convex optimization algorithm that solves an \underline{Info}rmation-cost \underline{S}tochastic \underline{N}onlinear \underline{O}ptimal \underline{C}ontrol problem (Info-SNOC). The optimization objective encodes both optimal performance and exploration for learning, and the safety is incorporated as distributionally robust chance constraints. The dynamics are predicted from a robust regression model that is learned from data. The Info-SNOC algorithm is used to compute a sub-optimal pool of safe motion plans that aid in exploration for learning unknown residual dynamics under safety constraints. A stable feedback controller is used to execute the motion plan and collect data for model learning. We prove the safety of rollout from our exploration method and reduction in uncertainty over epochs, thereby guaranteeing the consistency of our learning method. We validate the effectiveness of Info-SNOC by designing and implementing a pool of safe trajectories for a planar robot. We demonstrate that our approach has higher success rate in ensuring safety when compared to a deterministic trajectory optimization approach.Comment: Submitted to RA-L 2020, review-

    A Stochastic Hybrid Framework for Driver Behavior Modeling Based on Hierarchical Dirichlet Process

    Full text link
    Scalability is one of the major issues for real-world Vehicle-to-Vehicle network realization. To tackle this challenge, a stochastic hybrid modeling framework based on a non-parametric Bayesian inference method, i.e., hierarchical Dirichlet process (HDP), is investigated in this paper. This framework is able to jointly model driver/vehicle behavior through forecasting the vehicle dynamical time-series. This modeling framework could be merged with the notion of model-based information networking, which is recently proposed in the vehicular literature, to overcome the scalability challenges in dense vehicular networks via broadcasting the behavioral models instead of raw information dissemination. This modeling approach has been applied on several scenarios from the realistic Safety Pilot Model Deployment (SPMD) driving data set and the results show a higher performance of this model in comparison with the zero-hold method as the baseline.Comment: This is the accepted version of the paper in 2018 IEEE 88th Vehicular Technology Conference (VTC2018-Fall) (references added, title and abstract modified
    corecore