903 research outputs found

    Improving Knowledge-Based Systems with statistical techniques, text mining, and neural networks for non-technical loss detection

    Get PDF
    Currently, power distribution companies have several problems that are related to energy losses. For example, the energy used might not be billed due to illegal manipulation or a breakdown in the customer’s measurement equipment. These types of losses are called non-technical losses (NTLs), and these losses are usually greater than the losses that are due to the distribution infrastructure (technical losses). Traditionally, a large number of studies have used data mining to detect NTLs, but to the best of our knowledge, there are no studies that involve the use of a Knowledge-Based System (KBS) that is created based on the knowledge and expertise of the inspectors. In the present study, a KBS was built that is based on the knowledge and expertise of the inspectors and that uses text mining, neural networks, and statistical techniques for the detection of NTLs. Text mining, neural networks, and statistical techniques were used to extract information from samples, and this information was translated into rules, which were joined to the rules that were generated by the knowledge of the inspectors. This system was tested with real samples that were extracted from Endesa databases. Endesa is one of the most important distribution companies in Spain, and it plays an important role in international markets in both Europe and South America, having more than 73 million customers

    An Integrated IoT Architecture for Smart Metering

    Full text link
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Advanced meter infrastructures (AMIs) are systems that measure, collect, and analyze utilities distribution and consumption, and communicate with metering devices either on a schedule or on request. AMIs are becoming a vital part of utilities distribution network and allow the development of Smart Cities. In this article we propose an integrated Internet of Things architecture for smart meter networks to be deployed in smart cities. We discuss the communication protocol, the data format, the data gathering procedure, and the decision system based on big data treatment. The architecture includes electricity, water, and gas smart meters. Real measurements show the benefits of the proposed IoT architecture for both the customers and the utilities.Lloret, J.; Tomás Gironés, J.; Canovas Solbes, A.; Parra-Boronat, L. (2016). An Integrated IoT Architecture for Smart Metering. IEEE Communications Magazine. 54(12):50-57. doi:10.1109/MCOM.2016.1600647CMS5057541

    ANOMALY INFERENCE BASED ON HETEROGENEOUS DATA SOURCES IN AN ELECTRICAL DISTRIBUTION SYSTEM

    Get PDF
    Harnessing the heterogeneous data sets would improve system observability. While the current metering infrastructure in distribution network has been utilized for the operational purpose to tackle abnormal events, such as weather-related disturbance, the new normal we face today can be at a greater magnitude. Strengthening the inter-dependencies as well as incorporating new crowd-sourced information can enhance operational aspects such as system reconfigurability under extreme conditions. Such resilience is crucial to the recovery of any catastrophic events. In this dissertation, it is focused on the anomaly of potential foul play within an electrical distribution system, both primary and secondary networks as well as its potential to relate to other feeders from other utilities. The distributed generation has been part of the smart grid mission, the addition can be prone to electronic manipulation. This dissertation provides a comprehensive establishment in the emerging platform where the computing resources have been ubiquitous in the electrical distribution network. The topics covered in this thesis is wide-ranging where the anomaly inference includes load modeling and profile enhancement from other sources to infer of topological changes in the primary distribution network. While metering infrastructure has been the technological deployment to enable remote-controlled capability on the dis-connectors, this scholarly contribution represents the critical knowledge of new paradigm to address security-related issues, such as, irregularity (tampering by individuals) as well as potential malware (a large-scale form) that can massively manipulate the existing network control variables, resulting into large impact to the power grid

    A Survey on Energy Efficiency in Smart Homes and Smart Grids

    Get PDF
    Empowered by the emergence of novel information and communication technologies (ICTs) such as sensors and high-performance digital communication systems, Europe has adapted its electricity distribution network into a modern infrastructure known as a smart grid (SG). The benefits of this new infrastructure include precise and real-time capacity for measuring and monitoring the different energy-relevant parameters on the various points of the grid and for the remote operation and optimization of distribution. Furthermore, a new user profile is derived from this novel infrastructure, known as a prosumer (a user that can produce and consume energy to/from the grid), who can benefit from the features derived from applying advanced analytics and semantic technologies in the rich amount of big data generated by the different subsystems. However, this novel, highly interconnected infrastructure also presents some significant drawbacks, like those related to information security (IS). We provide a systematic literature survey of the ICT-empowered environments that comprise SGs and homes, and the application of modern artificial intelligence (AI) related technologies with sensor fusion systems and actuators, ensuring energy efficiency in such systems. Furthermore, we outline the current challenges and outlook for this field. These address new developments on microgrids, and data-driven energy efficiency that leads to better knowledge representation and decision-making for smart homes and SGsThis research was co-funded by Interreg Österreich-Bayern 2014–2020 programme project KI-Net: Bausteine für KI-basierte Optimierungen in der industriellen Fertigung (AB 292). This work is also supported by the ITEA3 OPTIMUM project and ITEA3 SCRATCH project, all of them funded by the Centro Tecnológico de Desarrollo Industrial (CDTI), Spain

    Threats and challenges of smart grids deployments - a developing nations’ perspective

    Get PDF
    Considerable efforts in huge investments are being made to achieve a resilient Smart Grids (SGs) deployment for the improvement of power delivery scheme. Unsurprisingly, many developing nations are making slow progress to the achievement of this feat, which is set to revolutionize the power industry, own to several deployment and security issues. Studying these threats and challenges from both technical and non-technical view, this paper presents a highlight and assessment of each of the identified challenges. These challenges are assessed by exposing the security and deployment related threats while suggesting ways of tackling these challenges with prominence to developing nations. Although, a brief highlight, this review will help key actors in the region to identify the related challenges and it’s a guide to sustainable deployments of SGs in developing nations

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Systematic review of energy theft practices and autonomous detection through artificial intelligence methods

    Get PDF
    Energy theft poses a significant challenge for all parties involved in energy distribution, and its detection is crucial for maintaining stable and financially sustainable energy grids. One potential solution for detecting energy theft is through the use of artificial intelligence (AI) methods. This systematic review article provides an overview of the various methods used by malicious users to steal energy, along with a discussion of the challenges associated with implementing a generalized AI solution for energy theft detection. In this work, we analyze the benefits and limitations of AI methods, including machine learning, deep learning, and neural networks, and relate them to the specific thefts also analyzing problems arising with data collection. The article proposes key aspects of generalized AI solutions for energy theft detection, such as the use of smart meters and the integration of AI algorithms with existing utility systems. Overall, we highlight the potential of AI methods to detect various types of energy theft and emphasize the need for further research to develop more effective and generalized detection systems, providing key aspects of possible generalized solutions

    A Novel Features-Based Multivariate Gaussian Distribution Method for the Fraudulent Consumers Detection in the Power Utilities of Developing Countries

    Get PDF
    According to statistics, developing countries all over the world have suffered significant non-technical losses (NTLs) both in natural gas and electricity distribution. NTLs are thought of as energy that is consumed but not billed e.g., theft, meter tampering, meter reversing, etc. The adaptation of smart metering technology has enabled much of the developed world to significantly reduce their NTLs. Also, the recent advancements in machine learning and data analytics have enabled a further reduction in these losses. However, these solutions are not directly applicable to developing countries because of their infrastructure and manual data collection. This paper proposes a tailored solution based on machine learning to mitigate NTLs in developing countries. The proposed method is based on a multivariate Gaussian distribution framework to identify fraudulent consumers. It integrates novel features like social class stratification and the weather profile of an area. Thus, achieving a significant improvement in fraudulent consumer detection. This study has been done on a real dataset of consumers provided by the local power distribution companies that have been cross-validated by onsite inspection. The obtained results successfully identify fraudulent consumers with a maximum success rate of 75%. 2013 IEEE.This work was supported by the Qatar National Library.Scopus2-s2.0-8510734936
    corecore