625 research outputs found

    Capacity Fade Analysis and Model Based Optimization of Lithium-ion Batteries

    Get PDF
    Electrochemical power sources have had significant improvements in design, economy, and operating range and are expected to play a vital role in the future in a wide range of applications. The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This dissertation contributes to the efforts in the modeling, simulation and optimization of lithium-ion batteries and their use in the design of better batteries for the future. While physics-based models have been widely developed and studied for these systems, the rigorous models have not been employed for parameter estimation or dynamic optimization of operating conditions. The first chapter discusses a systems engineering based approach to illustrate different critical issues possible ways to overcome them using modeling, simulation and optimization of lithium-ion batteries. The chapters 2-5, explain some of these ways to facilitate: i) capacity fade analysis of Li-ion batteries using different approaches for modeling capacity fade in lithium-ion batteries,: ii) model based optimal design in Li-ion batteries and: iii) optimum operating conditions: current profile) for lithium-ion batteries based on dynamic optimization techniques. The major outcomes of this thesis will be,: i) comparison of different types of modeling efforts that will help predict and understand capacity fade in lithium-ion batteries that will help design better batteries for the future,: ii) a methodology for the optimal design of next-generation porous electrodes for lithium-ion batteries, with spatially graded porosity distributions with improved energy efficiency and battery lifetime and: iii) optimized operating conditions of batteries for high energy and utilization efficiency, safer operation without thermal runaway and longer life

    Thermal Characteristics and Safety Aspects of Lithium-Ion Batteries: An In-Depth Review

    Get PDF
    This paper provides an overview of the significance of precise thermal analysis in the context of lithium-ion battery systems. It underscores the requirement for additional research to create efficient methodologies for modeling and controlling thermal properties, with the ultimate goal of enhancing both the safety and performance of Li-ion batteries. The interaction between temperature regulation and lithium-ion batteries is pivotal due to the intrinsic heat generation within these energy storage systems. A profound understanding of the thermal behaviors exhibited by lithium-ion batteries, along with the implementation of advanced temperature control strategies for battery packs, remains a critical pursuit. Utilizing tailored models to dissect the thermal dynamics of lithium-ion batteries significantly enhances our comprehension of their thermal management across a wide range of operational scenarios. This comprehensive review systematically explores diverse research endeavors that employ simulations and models to unravel intricate thermal characteristics, behavioral nuances, and potential runaway incidents associated with lithium-ion batteries. The primary objective of this review is to underscore the effectiveness of employed characterization methodologies and emphasize the pivotal roles that key parameters—specifically, current rate and temperature—play in shaping thermal dynamics. Notably, the enhancement of thermal design systems is often more feasible than direct alterations to the lithium-ion battery designs themselves. As a result, this thermal review primarily focuses on the realm of thermal systems. The synthesized insights offer a panoramic overview of research findings, with a deeper understanding requiring consultation of specific published studies and their corresponding modeling endeavors

    Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities

    Get PDF
    As the world races to respond to the diverse and expanding demands for electrochemical energy storage solutions, lithium-ion batteries (LIBs) remain the most advanced technology in the battery ecosystem. Even as unprecedented demand for state-of-the-art batteries drives gigascale production around the world, there are increasing calls for next-generation batteries that are safer, more affordable, and energy-dense. These trends motivate the intense pursuit of battery manufacturing processes that are cost effective, scalable, and sustainable. The digital transformation of battery manufacturing plants can help meet these needs. This review provides a detailed discussion of the current and near-term developments for the digitalization of the battery cell manufacturing chain and presents future perspectives in this field. Current modelling approaches are reviewed, and a discussion is presented on how these elements can be combined with data acquisition instruments and communication protocols in a framework for building a digital twin of the battery manufacturing chain. The challenges and emerging techniques provided here is expected to give scientists and engineers from both industry and academia a guide toward more intelligent and interconnected battery manufacturing processes in the future

    Unveiling the interaction of reactions and phase transition during thermal abuse of Li-ion batteries

    Get PDF
    Safety considerations have always accompanied the development of new battery chemistries; this holds especially for the Li-ion battery with its highly reactive components. An overall assessment and decrease of risks of catastrophic failures such as during thermal runaway, requires an in-depth and quantitative understanding of the ongoing processes and their interaction. This can be provided by predictive mathematical models. Thus, we developed a thermal runaway model that focuses on rigorous modelling of thermodynamic properties and reactions of each component within a Li-ion battery. Moreover, the presented model considers vapour–liquid equilibria of a binary solvent mixture for the first time. Simulations show a fragile equilibrium between endothermic and exothermic reactions, such as LiPF6_{6} and LEDC decomposition, in the early phases of self-heating. Further, an autocatalytic cycle involving the production of HF and the SEI component Li2_{2}CO3_{3} could be revealed. Additionally, the unpredictability of the thermal runaway could be directly correlated to availability of LEDC or contaminants such as water. Also, solvent boiling can have a significant influence on the self-heating phase of a Li-ion battery, due to its endothermic nature. Further analysis revealed that the rising pressure, stemming from gassing reactions, can suppress solvent boiling until the thermal runaway occurs

    Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities

    Get PDF
    As the world races to respond to the diverse and expanding demands for electrochemical energy storage solutions, lithium-ion batteries (LIBs) remain the most advanced technology in the battery ecosystem. Even as unprecedented demand for state-of-the-art batteries drives gigascale production around the world, there are increasing calls for next-generation batteries that are safer, more affordable, and energy-dense. These trends motivate the intense pursuit of battery manufacturing processes that are cost effective, scalable, and sustainable. The digital transformation of battery manufacturing plants can help meet these needs. This review provides a detailed discussion of the current and near-term developments for the digitalization of the battery cell manufacturing chain and presents future perspectives in this field. Current modelling approaches are reviewed, and a discussion is presented on how these elements can be combined with data acquisition instruments and communication protocols in a framework for building a digital twin of the battery manufacturing chain. The challenges and emerging techniques provided here is expected to give scientists and engineers from both industry and academia a guide toward more intelligent and interconnected battery manufacturing processes in the future.publishedVersio

    Effect of Design Parameters and Intercalation Induced Stresses in Lithium Ion Batteries

    Get PDF
    Electrochemical power sources, especially lithium ion batteries have become major players in various industrial sectors, with applications ranging from low power/energy demands to high power/energy requirements. But there are some significant issues existing for lithium ion systems which include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. Therefore, better design, operation and control of lithium ion batteries are essential to meet the growing demands of energy storage. Physics based modeling and simulation methods provide the best and most accurate approach for addressing such issues for lithium ion battery systems. This work tries to understand and address some of these issues, by development of physics based models and efficient simulation of such models for battery design and real time control purposes. This thesis will introduce a model-based procedure for simultaneous optimization of design parameters for porous electrodes that are commonly used in lithium ion systems. The approach simultaneously optimizes the battery design variables of electrode porosities and thickness for maximization of the energy drawn for an applied current, cut-off voltage, and total time of discharge. The results show reasonable improvement in the specific energy drawn from the lithium ion battery when the design parameters are simultaneously optimized. The second part of this dissertation will develop a 2-dimensional transient numerical model used to simulate the electrochemical lithium insertion in a silicon nanowire (Si NW) electrode. The model geometry is a cylindrical Si NW electrode anchored to a copper current collector (Cu CC) substrate. The model solves for diffusion of lithium in Si NW, stress generation in the Si NW due to chemical and elastic strain, stress generation in the Cu CC due to elastic strain, and volume expansion in the Si NW and Cu CC geometries. The evolution of stress components, i.e., radial, axial and tangential stresses in different regions in the Si NW are studied in details. Lithium-ion batteries are typically modeled using porous electrode theory coupled with various transport and reaction mechanisms with an appropriate discretization or approximation for the solid phase diffusion within the electrode particle. One of the major difficulties in simulating Li-ion battery models is the need for simulating solid-phase diffusion in the second radial dimension r within the particle. It increases the complexity of the model as well as the computation time/cost to a great extent. This is particularly true for the inclusion of pressure induced diffusion inside particles experiencing volume change. Therefore, to address such issues, part of the work will involve development of efficient methods for particle/solid phase reformulation - (1) parabolic profile approach and (2) a mixed order finite difference method. These models will be used for approximating/representing solid-phase concentration variations within the active material. Efficiency in simulation of particle level models can be of great advantage when these are coupled with macro-homogenous cell sandwich level battery models

    Challenges in Ceramic Science: A Report from the Workshop on Emerging Research Areas in Ceramic Science

    Get PDF
    In March 2012, a group of researchers met to discuss emerging topics in ceramic science and to identify grand challenges in the field. By the end of the workshop, the group reached a consensus on eight challenges for the future:—understanding rare events in ceramic microstructures, understanding the phase-like behavior of interfaces, predicting and controlling heterogeneous microstructures with unprecedented functionalities, controlling the properties of oxide electronics, understanding defects in the vicinity of interfaces, controlling ceramics far from equilibrium, accelerating the development of new ceramic materials, and harnessing order within disorder in glasses. This paper reports the outcomes of the workshop and provides descriptions of these challenges
    • …
    corecore