753 research outputs found

    Route Swarm: Wireless Network Optimization through Mobility

    Full text link
    In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. The ICP commands the robots towards evenly distributed inter-flow allocations, with intra-flow configurations that maximize route quality. The PCP then guides the robots via potential-based control to reconfigure according to ICP commands. This formulation, deemed Route Swarm, decouples information flow and physical control, generating a feedback between routing and sensing needs and robotic configuration. We demonstrate our propositions through simulation under a realistic wireless network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on Intelligent Robots and Systems (IROS) 201

    Distributed adaptive fault-tolerant leader-following formation control of nonlinear uncertain second-order multi-agent systems

    Get PDF
    This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader‐following formation control of a class of nonlinear uncertain second‐order multi‐agent systems. The fault model under consideration includes both process and actuator faults, which may evolve abruptly or incipiently. The time‐varying leader communicates with a small subset of follower agents, and each follower agent communicates to its directly connected neighbors through a bidirectional network with possibly asymmetric weights. A local fault diagnosis and accommodation component are designed for each agent in the distributed system, which consists of a fault detection and isolation module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault‐tolerant controllers, activated after fault detection and after fault isolation, respectively. By using appropriately the designed Lyapunov functions, the closed‐loop stability and asymptotic convergence properties of the leader‐follower formation are rigorously established under different modes of the fault‐tolerant control system

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Safe, Scalable, and Complete Motion Planning of Large Teams of Interchangeable Robots

    Get PDF
    Large teams of mobile robots have an unprecedented potential to assist humans in a number of roles ranging from humanitarian efforts to e-commerce order fulfillment. Utilizing a team of robots provides an inherent parallelism in computation and task completion while providing redundancy to isolated robot failures. Whether a mission requires all robots to stay close to each other in a formation, navigate to a preselected set of goal locations, or to actively try to spread out to gain as much information as possible, the team must be able to successfully navigate the robots to desired locations. While there is a rich literature on motion planning for teams of robots, the problem is sufficiently challenging that in general all methods trade off one of the following properties: completeness, computational scalability, safety, or optimality. This dissertation proposes robot interchangeability as an additional trade-off consideration. Specifically, the work presented here leverages the total interchangeability of robots and develops a series of novel, complete, computationally tractable algorithms to control a team of robots and avoid collisions while retaining a notion of optimality. This dissertation begins by presenting a robust decentralized formation control algorithm for control of robots operating in tight proximity to one another. Next, a series of complete, computationally tractable multiple robot planning algorithms are presented. These planners preserve optimality, completeness, and computationally tractability by leveraging robot interchangeability. Finally, a polynomial time approximation algorithm is proposed that routes teams of robots to visit a large number of specified locations while bounding the suboptimality of total mission completion time. Each algorithm is verified in simulation and when applicable, on a team of dynamic aerial robots

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Decentralized receding horizon control of cooperative vehicles with communication delays

    Get PDF
    This thesis investigates the decentralized receding horizon control (DRHC) for a network of cooperative vehicles where each vehicle in the group plans its future trajectory over a finite prediction horizon time. The vehicles exchange their predicted paths with the neighbouring vehicles through a communication channel in order to maintain the cooperation objectives. In this framework, more frequent communication provides improved performance and stability properties. The main focus of this thesis is on situations where large inter-vehicle communication delays are present. Such large delays may occur due to fault conditions with the communication devices or limited communication bandwidth. Large communication delays can potentially lead to poor performance, unsafe behaviour and even instability for the existing DRHC methods. The main objective of this thesis is to develop new DRHC methods that provide improved performance and stability properties in the presence of large communication delays. Fault conditions are defined and diagnosis algorithms are developed for situations with large communication delays. A fault tolerant DRHC architecture is then proposed which is capable of effectively using the delayed information. The main idea with the proposed approach is to estimate the path of the neighbouring faulty vehicles, when they are unavailable due to large delays, by adding extra decision variables to the cost function. It is demonstrated that this approach can result in significant improvements in performance and stability. Furthermore, the concept of the tube DRHC is proposed to provide the safety of the fleet against collisions during faulty conditions. In this approach, a tube shaped trajectory is assumed in the region around the delayed trajectory of the faulty vehicle instead of a line shaped trajectory. The neighbouring vehicles calculate the tube and are not allowed to enter that region. Feasibility, stability, and performance of the proposed fault tolerant DRHC are also investigated. Finally, a bandwidth allocation algorithm is proposed in order to optimize the communication periods so that the overall teaming performance is optimized. Together, these results form a new and effective framework for decentralized receding horizon control with communication faults and large communication delays

    Robust adaptive model predictive control for intelligent drinking water distribution systems

    Get PDF
    Large-scale complex systems have large numbers of variables, network structure of interconnected subsystems, nonlinearity, spatial distribution with several time scales in its dynamics, uncertainties and constrained. Decomposition of large-scale complex systems into smaller more manageable subsystems allowed for implementing distributed control and coordinations mechanisms. This thesis proposed the use of distributed softly switched robustly feasible model predictive controllers (DSSRFMPC) for the control of large-scale complex systems. Each DSSRFMPC is made up of reconfigurable robustly feasible model predictive controllers (RRFMPC) to adapt to different operational states or fault scenarios of the plant. RRFMPC reconfiguration to adapt to different operational states of the plant is achieved using the soft switching method between the RRFMPC controllers. The RRFMPC is designed by utilizing the off-line safety zones and the robustly feasible invariant sets in the state space which are established off-line using Karush Kuhn Tucker conditions. This is used to achieve robust feasibility and recursive feasibility for the RRFMPC under different operational states of the plant. The feasible adaptive cooperation among DSSRFMPC agents under different operational states are proposed. The proposed methodology is verified by applying it to a simulated benchmark drinking water distribution systems (DWDS) water quality control
    • 

    corecore