6,242 research outputs found

    Shallow Surveying in Hazardous Waters

    Get PDF
    Of order one importance to any study of nearshore processes is knowledge of the bathymetry in shallow water. This is true for studies on open coast sandy beaches where surf zone dynamics drive the system, inlet environments where bathymetric evolution can rapidly change navigation channels, and in more benign, lower-energy coastal environments that evolve slowly over 10’s to 100’s of years. Difficulties in obtaining shallow bathymetry where depth-limited wave breaking occurs, submerged hazards are present, or other harsh environments has led to the development of survey systems on highly maneuverable personal watercraft (Beach, et al., 1994; Cote, 1999; Dugan, et al., 1999; MacMahan, 2001). In this work we discuss shallow water surveying from the Coastal Bathymetry Survey System (CBASS), a Yamaha Waverunner equipped with differential GPS, single-beam 192 KHz acoustic echo-sounder, and onboard navigation system. Data obtained with the CBASS in three regions will be discussed, including an energetic surf zone located in southern California during the 2003 Nearshore Canyon Experiment (NCEX), on Lake Erie in 2002 (and compared with historical surveys dating back 150 years), and around Piscataqua River Inlet, NH, in 2007. Estimated accuracy (for sandy bottoms) in water depths ranging 1–10 m are 0.07-0.10 m in the vertical, and on the order of 0.1-1 m horizontally depending on water depth and bottom slope. The high maneuverability of the personal watercraft makes very shallow water bathymetric surveys possible with acoustic altimeters, particularly in regions where airborne remote sensing systems fail (owing to water clarity issues) or where repeated high resolution surveys are required (e.g., where an erodible bottom is rapidly evolving)

    Soundings: the Newsletter of the Monterey Bay Chapter of the American Cetacean Society. 1996

    Get PDF
    (PDF contains 96 pages.

    Seabed monitoring with Girona 500 AUV working as HROV

    Get PDF
    This paper presents the use of Girona 500 AUV as a Hybrid ROV (HROV) to inspect underwater habitats by combining basic teleoperation and automatic way-point following. This duality allows safe movements, when inspecting visually the seabed, together with precise way-point movements, when mapping or reaching the area. Also, the use of a HROV containing its own energy simplifies the management of the umbilical cable, which can be smaller, and integrates all safety measures of an AUV. The Girona 500 AUV has been tested acting as HROV during 3 campaigns at 80 metres depth in a project for evaluating the state of transplanted gorgonians.Peer Reviewe

    A LTA flight research vehicle

    Get PDF
    An Airship Flight Research Program is proposed. Major program objectives are summarized and a Modernized Navy ZPG3W Airship recommended as the flight test vehicle. The origin of the current interest in modern airship vehicles is briefly discussed and the major benefits resulting from the flight research program described. Airship configurations and specifications are included

    Advancing Climate Change Research and Hydrocarbon Leak Detection : by Combining Dissolved Carbon Dioxide and Methane Measurements with ADCP Data

    Get PDF
    With the emergence of largescale, comprehensive environmental monitoring projects, there is an increased need to combine state-of-the art technologies to address complicated problems such as ocean acidifi cation and hydrocarbon leak detection

    The Effect of Sonar on Human Hearing

    Get PDF

    Fear of killer whales drives extreme synchrony in deep diving beaked whales

    Get PDF
    Canary Islands: ONR grants N00014-16-1-2973 and N00014-16-1-3017, and the Spanish Central Government Plan Nacional DeepCom CTM2017-88686-P. PLT was supported by ONR grant N00014-18-1-2062 and PLT and MJ acknowledge the support of the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) in the completion of this study. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. FV and fieldwork at the Azores were supported by ONR grants N00014-15-1-2341 and N00014-17-1-2715 and by the Dutch Research Council (award number 016.Veni.181.086). NAS, PA and JA were funded for writing this paper by Ramon y Cajal, Agustín de Bethencourt and FPU grants from the Spanish Ministry and Cabildo de Tenerife, respectively.Fear of predation can induce profound changes in the behaviour and physiology of prey species even if predator encounters are infrequent. For echolocating toothed whales, the use of sound to forage exposes them to detection by eavesdropping predators, but while some species exploit social defences or produce cryptic acoustic signals, deep-diving beaked whales, well known for mass-strandings induced by navy sonar, seem enigmatically defenceless against their main predator, killer whales. Here we test the hypothesis that the stereotyped group diving and vocal behaviour of beaked whales has benefits for abatement of predation risk and thus could have been driven by fear of predation over evolutionary time. Biologging data from 14 Blainville’s and 12 Cuvier’s beaked whales show that group members have an extreme synchronicity, overlapping vocal foraging time by 98% despite hunting individually, thereby reducing group temporal availability for acoustic detection by killer whales to <25%. Groups also perform a coordinated silent ascent in an unpredictable direction, covering a mean of 1 km horizontal distance from their last vocal position. This tactic sacrifices 35% of foraging time but reduces by an order of magnitude the risk of interception by killer whales. These predator abatement behaviours have likely served beaked whales over millions of years, but may become maladaptive by playing a role in mass strandings induced by man-made predator-like sonar sounds.Publisher PDFPeer reviewe

    Oceanus.

    Get PDF
    v. 38, no.1 (1995

    Evolution of Sonar Survey Systems for Sea Floor Studies

    Get PDF
    Approximately 71% of our planet is covered with oceans. It is also known that oceans are the last frontiers for the mankind’s survival and therefore it becomes pertinent that they are studied in great details. It has been found that the exploration of the oceans can be done more precisely using acoustics as one of the methods, as the acoustic waves can propagate over large distances and also using a broad spectrum of frequencies various issues of the ocean studies can be addressed more effectively than many of the other methods, both in terms resolution (using high frequency components) of measuring parameters and over large ranges (using low to very low frequency components). Currently with the technological advancement and improved computing algorithms, we have state of art systems for ocean exploration, which can provide information about the sea floor, sub-surface including ocean floor classification. These could be projected in 2-D and 3-D visualization to a great accuracy. Also available are acoustical methods wherein one can obtain an extremely important information about water column properties (both in terms of bioinformation and physical properties), and has great importance as this water column is the medium for transmission of all kind of energies(acoustic for short, medium and long ranges and some time light source for exploration over a very short distance) that are used for exploration on the oceans. It will therefore be interesting to understand the progress of underwater acoustics from its very primitive stage, where acoustic transmission through water medium was used for first time to the present day highly complex but very advanced acoustic sea-floor surveying systems. It will also be interesting to know, with a very old maritime history of using seas for transportation, as to what were the methods used by early time seafarers to understand depths of the oceans they were sailing. It has taken almost a century in developing an acoustic system to arrive at the present day advancement. An attempt has been made to present a perspective of evolution and advancement in underwater acoustics and related electronic, material and computational advancement, starting from the early attempts to the modern day acoustic equipments
    • …
    corecore