3,785 research outputs found

    Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression

    Full text link
    In high dimensional settings, sparse structures are crucial for efficiency, both in term of memory, computation and performance. It is customary to consider â„“1\ell_1 penalty to enforce sparsity in such scenarios. Sparsity enforcing methods, the Lasso being a canonical example, are popular candidates to address high dimension. For efficiency, they rely on tuning a parameter trading data fitting versus sparsity. For the Lasso theory to hold this tuning parameter should be proportional to the noise level, yet the latter is often unknown in practice. A possible remedy is to jointly optimize over the regression parameter as well as over the noise level. This has been considered under several names in the literature: Scaled-Lasso, Square-root Lasso, Concomitant Lasso estimation for instance, and could be of interest for confidence sets or uncertainty quantification. In this work, after illustrating numerical difficulties for the Smoothed Concomitant Lasso formulation, we propose a modification we coined Smoothed Concomitant Lasso, aimed at increasing numerical stability. We propose an efficient and accurate solver leading to a computational cost no more expansive than the one for the Lasso. We leverage on standard ingredients behind the success of fast Lasso solvers: a coordinate descent algorithm, combined with safe screening rules to achieve speed efficiency, by eliminating early irrelevant features

    Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets

    Full text link
    Sparse-Group Lasso (SGL) has been shown to be a powerful regression technique for simultaneously discovering group and within-group sparse patterns by using a combination of the â„“1\ell_1 and â„“2\ell_2 norms. However, in large-scale applications, the complexity of the regularizers entails great computational challenges. In this paper, we propose a novel Two-Layer Feature REduction method (TLFre) for SGL via a decomposition of its dual feasible set. The two-layer reduction is able to quickly identify the inactive groups and the inactive features, respectively, which are guaranteed to be absent from the sparse representation and can be removed from the optimization. Existing feature reduction methods are only applicable for sparse models with one sparsity-inducing regularizer. To our best knowledge, TLFre is the first one that is capable of dealing with multiple sparsity-inducing regularizers. Moreover, TLFre has a very low computational cost and can be integrated with any existing solvers. We also develop a screening method---called DPC (DecomPosition of Convex set)---for the nonnegative Lasso problem. Experiments on both synthetic and real data sets show that TLFre and DPC improve the efficiency of SGL and nonnegative Lasso by several orders of magnitude
    • …
    corecore