755 research outputs found

    Collaborative Bimanual Manipulation Using Optimal Motion Adaptation and Interaction Control Retargetting Human Commands to Feasible Robot Control References

    Get PDF
    This article presents a robust and reliable human–robot collaboration (HRC) framework for bimanual manipulation. We propose an optimal motion adaptation method to retarget arbitrary human commands to feasible robot pose references while maintaining payload stability. The framework comprises three modules: 1) a task-space sequential equilibrium and inverse kinematics optimization ( task-space SEIKO ) for retargeting human commands and enforcing feasibility constraints, 2) an admittance controller to facilitate compliant human–robot physical interactions, and 3) a low-level controller improving stability during physical interactions. Experimental results show that the proposed framework successfully adapted infeasible and dangerous human commands into continuous motions within safe boundaries and achieved stable grasping and maneuvering of large and heavy objects on a real dual-arm robot via teleoperation and physical interaction. Furthermore, the framework demonstrated the capability in the assembly task of building blocks and the insertion task of industrial power connectors

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Robotic manipulators for single access surgery

    Get PDF
    This thesis explores the development of cooperative robotic manipulators for enhancing surgical precision and patient outcomes in single-access surgery and, specifically, Transanal Endoscopic Microsurgery (TEM). During these procedures, surgeons manipulate a heavy set of instruments via a mechanical clamp inserted in the patient’s body through a surgical port, resulting in imprecise movements, increased patient risks, and increased operating time. Therefore, an articulated robotic manipulator with passive joints is initially introduced, featuring built-in position and force sensors in each joint and electronic joint brakes for instant lock/release capability. The articulated manipulator concept is further improved with motorised joints, evolving into an active tool holder. The joints allow the incorporation of advanced robotic capabilities such as ultra-lightweight gravity compensation and hands-on kinematic reconfiguration, which can optimise the placement of the tool holder in the operating theatre. Due to the enhanced sensing capabilities, the application of the active robotic manipulator was further explored in conjunction with advanced image guidance approaches such as endomicroscopy. Recent advances in probe-based optical imaging such as confocal endomicroscopy is making inroads in clinical uses. However, the challenging manipulation of imaging probes hinders their practical adoption. Therefore, a combination of the fully cooperative robotic manipulator with a high-speed scanning endomicroscopy instrument is presented, simplifying the incorporation of optical biopsy techniques in routine surgical workflows. Finally, another embodiment of a cooperative robotic manipulator is presented as an input interface to control a highly-articulated robotic instrument for TEM. This master-slave interface alleviates the drawbacks of traditional master-slave devices, e.g., using clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of intuitive manipulation feedback, e.g. joint limits, to the user. To address those drawbacks a joint-space robotic manipulator is proposed emulating the kinematic structure of the flexible robotic instrument under control.Open Acces

    Bio-mimetic Adaptive Force/Position Control Using Fractal Impedance

    Get PDF
    The ability of animals to interact with complex dynamics is unmatched in robots. Especially important to the interaction performances is the online adaptation of body dynamics, which can be modeled as an impedance behaviour. However, the variable impedance controller still possesses a challenge in the current control frameworks due to the difficulties of retaining stability when adapting the controller gains. The fractal impedance controller has been recently proposed to solve this issue. However, it still has limitations such as sudden jumps in force when it starts to converge to the desired position and the lack of a force feedback loop. In this manuscript, two improvements are made to the control framework to solve these limitations. The force discontinuity has been addressed introducing a modulation of the impedance via a virtual antagonist that modulates the output force. The force tracking has been modeled after the parallel force/position controller architecture. In contrast to traditional methods, the fractal impedance controller enables the implementation of a search algorithm on the force feedback to adapt its behaviour on the external environment instead of on relying on \textit{a priori} knowledge of the external dynamics. Preliminary simulation results presented in this paper show the feasibility of the proposed approach, and it allows to evaluate the trade-off that needs to be made when relying on the proposed controller for interaction. In conclusion, the proposed method mimics the behaviour of an agonist/antagonist system adapting to unknown external dynamics, and it may find application in computational neuroscience, haptics, and interaction control.Comment: \c{opyright} 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Ein hierarchisches Framework für physikalische Mensch-Roboter-Interaktion

    Get PDF
    Robots are becoming more than machines performing repetitive tasks behind safety fences, and are expected to perform multiple complex tasks and work together with a human. For that purpose, modern robots are commonly built with two main characteristics: a large number of joints to increase their versatility and the capability to feel the environment through torque/force sensors. Controlling such complex robots requires the development of sophisticated frameworks capable of handling multiple tasks. Various frameworks have been proposed in the last years to deal with the redundancy caused by a large number of joints. Those hierarchical frameworks prioritize the achievement of the main task with the whole robot capability, while secondary tasks are performed as well as the remaining mobility allows it. This methodology presents considerable drawbacks in applications requiring that the robot respects constraints imposed by, e.g., safety restrictions or physical limitations. One particular case is unilateral constraints imposed by, e.g., joint or workspace limits. To implement them, task hierarchical frameworks rely on the activation of repulsive potential fields when approaching the limit. The performance of the potential field depends on the configuration and speed of the robot. Additionally, speed limitation is commonly required in collaborative scenarios, but it has been insufficiently treated for torque-controlled robots. With the aim of controlling redundant robots in collaborative scenarios, this thesis proposes a framework that handles multiple tasks under multiple constraints. The robot’s reaction to physical interaction must be intuitive and safe for humans: The robot must not impose high forces on the human or react unexpectedly to external forces. The proposed framework uses novel methods to avoid exceeding position, velocity and acceleration limits in joint and Cartesian spaces. A comparative study is carried out between different redundancy resolution solvers to contrast the diverse approaches used to solve the redundancy problem. Widely used projector-based and quadratic programming-based hierarchical solvers were experimentally analyzed when reacting to external forces. Experiments were performed using an industrial redundant collaborative robot. Results demonstrate that the proposed method to handle unilateral constraints produces a safe and expected reaction in the presence of external forces exerted by humans. The robot does not exceed the given limits, while the tasks performed are prioritized hierarchically

    Motion Control of the Hybrid Wheeled-Legged Quadruped Robot Centauro

    Get PDF
    Emerging applications will demand robots to deal with a complex environment, which lacks the structure and predictability of the industrial workspace. Complex scenarios will require robot complexity to increase as well, as compared to classical topologies such as fixed-base manipulators, wheeled mobile platforms, tracked vehicles, and their combinations. Legged robots, such as humanoids and quadrupeds, promise to provide platforms which are flexible enough to handle real world scenarios; however, the improved flexibility comes at the cost of way higher control complexity. As a trade-off, hybrid wheeled-legged robots have been proposed, resulting in the mitigation of control complexity whenever the ground surface is suitable for driving. Following this idea, a new hybrid robot called Centauro has been developed inside the Humanoid and Human Centered Mechatronics lab at Istituto Italiano di Tecnologia (IIT). Centauro is a wheeled-legged quadruped with a humanoid bi-manual upper-body. Differently from other platform of similar concept, Centauro employs customized actuation units, which provide high torque outputs, moderately fast motions, and the possibility to control the exerted torque. Moreover, with more than forty motors moving its limbs, Centauro is a very redundant platform, with the potential to execute many different tasks at the same time. This thesis deals with the design and development of a software architecture, and a control system, tailored to such a robot; both wheeled and legged locomotion strategies have been studied, as well as prioritized, whole-body and interaction controllers exploiting the robot torque control capabilities, and capable to handle the system redundancy. A novel software architecture, made of (i) a real-time robotic middleware, and (ii) a framework for online, prioritized Cartesian controller, forms the basis of the entire work
    • …
    corecore