2,509 research outputs found

    Provably Learning Nash Policies in Constrained Markov Potential Games

    Full text link
    Multi-agent reinforcement learning (MARL) addresses sequential decision-making problems with multiple agents, where each agent optimizes its own objective. In many real-world instances, the agents may not only want to optimize their objectives, but also ensure safe behavior. For example, in traffic routing, each car (agent) aims to reach its destination quickly (objective) while avoiding collisions (safety). Constrained Markov Games (CMGs) are a natural formalism for safe MARL problems, though generally intractable. In this work, we introduce and study Constrained Markov Potential Games (CMPGs), an important class of CMGs. We first show that a Nash policy for CMPGs can be found via constrained optimization. One tempting approach is to solve it by Lagrangian-based primal-dual methods. As we show, in contrast to the single-agent setting, however, CMPGs do not satisfy strong duality, rendering such approaches inapplicable and potentially unsafe. To solve the CMPG problem, we propose our algorithm Coordinate-Ascent for CMPGs (CA-CMPG), which provably converges to a Nash policy in tabular, finite-horizon CMPGs. Furthermore, we provide the first sample complexity bounds for learning Nash policies in unknown CMPGs, and, which under additional assumptions, guarantee safe exploration.Comment: 30 page

    Reinforcement Learning Based on Real-Time Iteration NMPC

    Get PDF
    Reinforcement Learning (RL) has proven a stunning ability to learn optimal policies from data without any prior knowledge on the process. The main drawback of RL is that it is typically very difficult to guarantee stability and safety. On the other hand, Nonlinear Model Predictive Control (NMPC) is an advanced model-based control technique which does guarantee safety and stability, but only yields optimality for the nominal model. Therefore, it has been recently proposed to use NMPC as a function approximator within RL. While the ability of this approach to yield good performance has been demonstrated, the main drawback hindering its applicability is related to the computational burden of NMPC, which has to be solved to full convergence. In practice, however, computationally efficient algorithms such as the Real-Time Iteration (RTI) scheme are deployed in order to return an approximate NMPC solution in very short time. In this paper we bridge this gap by extending the existing theoretical framework to also cover RL based on RTI NMPC. We demonstrate the effectiveness of this new RL approach with a nontrivial example modeling a challenging nonlinear system subject to stochastic perturbations with the objective of optimizing an economic cost.Comment: accepted for the IFAC World Congress 202

    Batch Policy Learning under Constraints

    Get PDF
    When learning policies for real-world domains, two important questions arise: (i) how to efficiently use pre-collected off-policy, non-optimal behavior data; and (ii) how to mediate among different competing objectives and constraints. We thus study the problem of batch policy learning under multiple constraints, and offer a systematic solution. We first propose a flexible meta-algorithm that admits any batch reinforcement learning and online learning procedure as subroutines. We then present a specific algorithmic instantiation and provide performance guarantees for the main objective and all constraints. To certify constraint satisfaction, we propose a new and simple method for off-policy policy evaluation (OPE) and derive PAC-style bounds. Our algorithm achieves strong empirical results in different domains, including in a challenging problem of simulated car driving subject to multiple constraints such as lane keeping and smooth driving. We also show experimentally that our OPE method outperforms other popular OPE techniques on a standalone basis, especially in a high-dimensional setting

    Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs

    Full text link
    We study the problem of computing an optimal policy of an infinite-horizon discounted constrained Markov decision process (constrained MDP). Despite the popularity of Lagrangian-based policy search methods used in practice, the oscillation of policy iterates in these methods has not been fully understood, bringing out issues such as violation of constraints and sensitivity to hyper-parameters. To fill this gap, we employ the Lagrangian method to cast a constrained MDP into a constrained saddle-point problem in which max/min players correspond to primal/dual variables, respectively, and develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy. Specifically, we first propose a regularized policy gradient primal-dual (RPG-PD) method that updates the policy using an entropy-regularized policy gradient, and the dual via a quadratic-regularized gradient ascent, simultaneously. We prove that the policy primal-dual iterates of RPG-PD converge to a regularized saddle point with a sublinear rate, while the policy iterates converge sublinearly to an optimal constrained policy. We further instantiate RPG-PD in large state or action spaces by including function approximation in policy parametrization, and establish similar sublinear last-iterate policy convergence. Second, we propose an optimistic policy gradient primal-dual (OPG-PD) method that employs the optimistic gradient method to update primal/dual variables, simultaneously. We prove that the policy primal-dual iterates of OPG-PD converge to a saddle point that contains an optimal constrained policy, with a linear rate. To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.Comment: 78 pages, 17 figures, and 1 tabl

    Provably Efficient Generalized Lagrangian Policy Optimization for Safe Multi-Agent Reinforcement Learning

    Full text link
    We examine online safe multi-agent reinforcement learning using constrained Markov games in which agents compete by maximizing their expected total rewards under a constraint on expected total utilities. Our focus is confined to an episodic two-player zero-sum constrained Markov game with independent transition functions that are unknown to agents, adversarial reward functions, and stochastic utility functions. For such a Markov game, we employ an approach based on the occupancy measure to formulate it as an online constrained saddle-point problem with an explicit constraint. We extend the Lagrange multiplier method in constrained optimization to handle the constraint by creating a generalized Lagrangian with minimax decision primal variables and a dual variable. Next, we develop an upper confidence reinforcement learning algorithm to solve this Lagrangian problem while balancing exploration and exploitation. Our algorithm updates the minimax decision primal variables via online mirror descent and the dual variable via projected gradient step and we prove that it enjoys sublinear rate O((∣X∣+∣Y∣)LT(∣A∣+∣B∣))) O((|X|+|Y|) L \sqrt{T(|A|+|B|)})) for both regret and constraint violation after playing TT episodes of the game. Here, LL is the horizon of each episode, (∣X∣,∣A∣)(|X|,|A|) and (∣Y∣,∣B∣)(|Y|,|B|) are the state/action space sizes of the min-player and the max-player, respectively. To the best of our knowledge, we provide the first provably efficient online safe reinforcement learning algorithm in constrained Markov games.Comment: 59 pages, a full version of the main paper in the 5th Annual Conference on Learning for Dynamics and Contro
    • …
    corecore