451 research outputs found

    System of Terrain Analysis, Energy Estimation and Path Planning for Planetary Exploration by Robot Teams

    Get PDF
    NASA’s long term plans involve a return to manned moon missions, and eventually sending humans to mars. The focus of this project is the use of autonomous mobile robotics to enhance these endeavors. This research details the creation of a system of terrain classification, energy of traversal estimation and low cost path planning for teams of inexpensive and potentially expendable robots. The first stage of this project was the creation of a model which estimates the energy requirements of the traversal of varying terrain types for a six wheel rocker-bogie rover. The wheel/soil interaction model uses Shibly’s modified Bekker equations and incorporates a new simplified rocker-bogie model for estimating wheel loads. In all but a single trial the relative energy requirements for each soil type were correctly predicted by the model. A path planner for complete coverage intended to minimize energy consumption was designed and tested. It accepts as input terrain maps detailing the energy consumption required to move to each adjacent location. Exploration is performed via a cost function which determines the robot’s next move. This system was successfully tested for multiple robots by means of a shared exploration map. At peak efficiency, the energy consumed by our path planner was only 56% that used by the best case back and forth coverage pattern. After performing a sensitivity analysis of Shibly’s equations to determine which soil parameters most affected energy consumption, a neural network terrain classifier was designed and tested. The terrain classifier defines all traversable terrain as one of three soil types and then assigns an assumed set of soil parameters. The classifier performed well over all, but had some difficulty distinguishing large rocks from sand. This work presents a system which successfully classifies terrain imagery into one of three soil types, assesses the energy requirements of terrain traversal for these soil types and plans efficient paths of complete coverage for the imaged area. While there are further efforts that can be made in all areas, the work achieves its stated goals

    Fast Approximate Clearance Evaluation for Rovers with Articulated Suspension Systems

    Full text link
    We present a light-weight body-terrain clearance evaluation algorithm for the automated path planning of NASA's Mars 2020 rover. Extraterrestrial path planning is challenging due to the combination of terrain roughness and severe limitation in computational resources. Path planning on cluttered and/or uneven terrains requires repeated safety checks on all the candidate paths at a small interval. Predicting the future rover state requires simulating the vehicle settling on the terrain, which involves an inverse-kinematics problem with iterative nonlinear optimization under geometric constraints. However, such expensive computation is intractable for slow spacecraft computers, such as RAD750, which is used by the Curiosity Mars rover and upcoming Mars 2020 rover. We propose the Approximate Clearance Evaluation (ACE) algorithm, which obtains conservative bounds on vehicle clearance, attitude, and suspension angles without iterative computation. It obtains those bounds by estimating the lowest and highest heights that each wheel may reach given the underlying terrain, and calculating the worst-case vehicle configuration associated with those extreme wheel heights. The bounds are guaranteed to be conservative, hence ensuring vehicle safety during autonomous navigation. ACE is planned to be used as part of the new onboard path planner of the Mars 2020 rover. This paper describes the algorithm in detail and validates our claim of conservatism and fast computation through experiments

    Stable Autonomous Robotic Wheelchair Navigation in the Environment with Slope Way

    Get PDF
    In this article, we present a path planning approach that is capable of generating a feasible trajectory for stable robotic wheelchair navigation in the environment with slope way. Firstly, the environment is modeled by a lightweight navigation map, with which the proposed sampling-based path planning scheme with a modified extension function can generate a feasible path. Then, the path is further optimized by the proposed utility function involving the human comfort and the path cost. To improve the searching efficiency of an optimal trajectory, we present an adaptive weighting Gaussian Mixture Model (GMM) based sampling strategy. Particularly, the weights of the components in GMM are adjusted adaptively in the planning process. It is also worth noting that the proposed sampling-based planning paradigm can indicate the unsafe regions in the navigation map, which forms a traversable map and further guarantees the safety of the wheelchair robot navigation. Furthermore, the effectiveness and the efficiency of the proposed path planning method are verified in both simulation and real-world experiments. © 1967-2012 IEEE

    A New Terrain Classification Framework Using Proprioceptive Sensors for Mobile Robots

    Get PDF
    Mobile robots that operate in real-world environments interact with the surroundings to generate complex acoustics and vibration signals, which carry rich information about the terrain. This paper presents a new terrain classification framework that utilizes both acoustics and vibration signals resulting from the robot-terrain interaction. As an alternative to handcrafted domain-specific feature extraction, a two-stage feature selection method combining ReliefF and mRMR algorithms was developed to select optimal feature subsets that carry more discriminative information. As different data sources can provide complementary information, a multiclassifier combination method was proposed by considering a priori knowledge and fusing predictions from five data sources: one acoustic data source and four vibration data sources. In this study, four conceptually different classifiers were employed to perform the classification, each with a different number of optimal features. Signals were collected using a tracked robot moving at three different speeds on six different terrains. The new framework successfully improved classification performance of different classifiers using the newly developed optimal feature subsets. The greater improvement was observed for robot traversing at lower speeds

    Intelligent Behavior of Autonomous Vehicles in Outdoor Environment

    Get PDF
    The objective of this PhD-project has been to develop and enhance the operational behaviour of autonomous or automated conventional machines under out-door conditions. This has included developing high-level planning measures for the maximisation of machine productivity as an important element in the continued efforts of planning and controlling resource inputs in both arable and high value crops farming. The methods developed generate the optimized coverage path for any field regardless of its complexity on 2D or 3D terrains without any human intervention and in a manner that minimizes operational time, skipped and overlapped areas, and fuel consumption. By applying the developed approaches, a reduction of more than 20% in consumed fossil fuel together with a corresponding reduction in the emissions of CO2 and other greenhouses is achievable.In this work, a software package for the autonomous navigation of field robotics over 2D and 3D field terrains and the optimization of field operations and machinery systems have been developed. A web-based version of the developed software package is currently under progress

    Traversability analysis in unstructured forested terrains for off-road autonomy using LIDAR data

    Get PDF
    Scene perception and traversability analysis are real challenges for autonomous driving systems. In the context of off-road autonomy, there are additional challenges due to the unstructured environments and the existence of various vegetation types. It is necessary for the Autonomous Ground Vehicles (AGVs) to be able to identify obstacles and load-bearing surfaces in the terrain to ensure a safe navigation (McDaniel et al. 2012). The presence of vegetation in off-road autonomy applications presents unique challenges for scene understanding: 1) understory vegetation makes it difficult to detect obstacles or to identify load-bearing surfaces; and 2) trees are usually regarded as obstacles even though only trunks of the trees pose collision risk in navigation. The overarching goal of this dissertation was to study traversability analysis in unstructured forested terrains for off-road autonomy using LIDAR data. More specifically, to address the aforementioned challenges, this dissertation studied the impacts of the understory vegetation density on the solid obstacle detection performance of the off-road autonomous systems. By leveraging a physics-based autonomous driving simulator, a classification-based machine learning framework was proposed for obstacle detection based on point cloud data captured by LIDAR. Features were extracted based on a cumulative approach meaning that information related to each feature was updated at each timeframe when new data was collected by LIDAR. It was concluded that the increase in the density of understory vegetation adversely affected the classification performance in correctly detecting solid obstacles. Additionally, a regression-based framework was proposed for estimating the understory vegetation density for safe path planning purposes according to which the traversabilty risk level was regarded as a function of estimated density. Thus, the denser the predicted density of an area, the higher the risk of collision if the AGV traversed through that area. Finally, for the trees in the terrain, the dissertation investigated statistical features that can be used in machine learning algorithms to differentiate trees from solid obstacles in the context of forested off-road scenes. Using the proposed extracted features, the classification algorithm was able to generate high precision results for differentiating trees from solid obstacles. Such differentiation can result in more optimized path planning in off-road applications
    • …
    corecore