12,358 research outputs found

    Safe Control under Uncertainty with Probabilistic Signal Temporal Logic

    Get PDF
    Abstract-Safe control of dynamical systems that satisfy temporal invariants expressing various safety properties is a challenging problem that has drawn the attention of many researchers. However, making the assumption that such temporal properties are deterministic is far from the reality. For example, a robotic system might employ a camera sensor and a machine learned system to identify obstacles. Consequently, the safety properties the controller has to satisfy, will be a function of the sensor data and the associated classifier. We propose a framework for achieving safe control. At the heart of our approach is the new Probabilistic Signal Temporal Logic (PrSTL), an expressive language to define stochastic properties, and enforce probabilistic guarantees on them. We also present an efficient algorithm to reason about safe controllers given the constraints derived from the PrSTL specification. One of the key distinguishing features of PrSTL is that the encoded logic is adaptive and changes as the system encounters additional data and updates its beliefs about the latent random variables that define the safety properties. We demonstrate our approach by deriving safe control of quadrotors and autonomous vehicles in dynamic environments

    From Uncertainty Data to Robust Policies for Temporal Logic Planning

    Full text link
    We consider the problem of synthesizing robust disturbance feedback policies for systems performing complex tasks. We formulate the tasks as linear temporal logic specifications and encode them into an optimization framework via mixed-integer constraints. Both the system dynamics and the specifications are known but affected by uncertainty. The distribution of the uncertainty is unknown, however realizations can be obtained. We introduce a data-driven approach where the constraints are fulfilled for a set of realizations and provide probabilistic generalization guarantees as a function of the number of considered realizations. We use separate chance constraints for the satisfaction of the specification and operational constraints. This allows us to quantify their violation probabilities independently. We compute disturbance feedback policies as solutions of mixed-integer linear or quadratic optimization problems. By using feedback we can exploit information of past realizations and provide feasibility for a wider range of situations compared to static input sequences. We demonstrate the proposed method on two robust motion-planning case studies for autonomous driving

    Technical Report: Distribution Temporal Logic: Combining Correctness with Quality of Estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach.Comment: More expanded version of "Distribution Temporal Logic: Combining Correctness with Quality of Estimation" to appear in IEEE CDC 201

    Technical report: Distribution Temporal Logic: combining correctness with quality of estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach

    Barrier Functions for Multiagent-POMDPs with DTL Specifications

    Get PDF
    Multi-agent partially observable Markov decision processes (MPOMDPs) provide a framework to represent heterogeneous autonomous agents subject to uncertainty and partial observation. In this paper, given a nominal policy provided by a human operator or a conventional planning method, we propose a technique based on barrier functions to design a minimally interfering safety-shield ensuring satisfaction of high-level specifications in terms of linear distribution temporal logic (LDTL). To this end, we use sufficient and necessary conditions for the invariance of a given set based on discrete-time barrier functions (DTBFs) and formulate sufficient conditions for finite time DTBF to study finite time convergence to a set. We then show that different LDTL mission/safety specifications can be cast as a set of invariance or finite time reachability problems. We demonstrate that the proposed method for safety-shield synthesis can be implemented online by a sequence of one-step greedy algorithms. We demonstrate the efficacy of the proposed method using experiments involving a team of robots
    • …
    corecore