78 research outputs found

    Nonsmooth Optimization; Proceedings of an IIASA Workshop, March 28 - April 8, 1977

    Get PDF
    Optimization, a central methodological tool of systems analysis, is used in many of IIASA's research areas, including the Energy Systems and Food and Agriculture Programs. IIASA's activity in the field of optimization is strongly connected with nonsmooth or nondifferentiable extreme problems, which consist of searching for conditional or unconditional minima of functions that, due to their complicated internal structure, have no continuous derivatives. Particularly significant for these kinds of extreme problems in systems analysis is the strong link between nonsmooth or nondifferentiable optimization and the decomposition approach to large-scale programming. This volume contains the report of the IIASA workshop held from March 28 to April 8, 1977, entitled Nondifferentiable Optimization. However, the title was changed to Nonsmooth Optimization for publication of this volume as we are concerned not only with optimization without derivatives, but also with problems having functions for which gradients exist almost everywhere but are not continous, so that the usual gradient-based methods fail. Because of the small number of participants and the unusual length of the workshop, a substantial exchange of information was possible. As a result, details of the main developments in nonsmooth optimization are summarized in this volume, which might also be considered a guide for inexperienced users. Eight papers are presented: three on subgradient optimization, four on descent methods, and one on applicability. The report also includes a set of nonsmooth optimization test problems and a comprehensive bibliography

    Canonical Duality Theory for Global Optimization problems and applications

    Get PDF
    The canonical duality theory is studied, through a discussion on a general global optimization problem and applications on fundamentally important problems. This general problem is a formulation of the minimization problem with inequality constraints, where the objective function and constraints are any convex or nonconvex functions satisfying certain decomposition conditions. It covers convex problems, mixed integer programming problems and many other nonlinear programming problems. The three main parts of the canonical duality theory are canonical dual transformation, complementary-dual principle and triality theory. The complementary-dual principle is further developed, which conventionally states that each critical point of the canonical dual problem is corresponding to a KKT point of the primal problem with their sharing the same function value. The new result emphasizes that there exists a one-to-one correspondence between KKT points of the dual problem and of the primal problem and each pair of the corresponding KKT points share the same function value, which implies that there is truly no duality gap between the canonical dual problem and the primal problem. The triality theory reveals insightful information about global and local solutions. It is shown that as long as the global optimality condition holds true, the primal problem is equivalent to a convex problem in the dual space, which can be solved efficiently by existing convex methods; even if the condition does not hold, the convex problem still provides a lower bound that is at least as good as that by the Lagrangian relaxation method. It is also shown that through examining the canonical dual problem, the hidden convexity of the primal problem is easily observable. The canonical duality theory is then applied to dealing with three fundamentally important problems. The first one is the spherically constrained quadratic problem, also referred to as the trust region subproblem. The canonical dual problem is onedimensional and it is proved that the primal problem, no matter with convex or nonconvex objective function, is equivalent to a convex problem in the dual space. Moreover, conditions are found which comprise the boundary that separates instances into ā€œhard caseā€ and ā€œeasy caseā€. A canonical primal-dual algorithm is developed, which is able to efficiently solve the problem, including the ā€œhard caseā€, and can be used as a unified method for similar problems. The second one is the binary quadratic problem, a fundamental problem in discrete optimization. The discussion is focused on lower bounds and analytically solvable cases, which are obtained by analyzing the canonical dual problem with perturbation techniques. The third one is a general nonconvex problem with log-sum-exp functions and quartic polynomials. It arises widely in engineering science and it can be used to approximate nonsmooth optimization problems. The work shows that problems can still be efficiently solved, via the canonical duality approach, even if they are nonconvex and nonsmooth.Doctor of Philosoph
    • ā€¦
    corecore