106 research outputs found

    Practical Saccade Prediction for Head-Mounted Displays: Towards a Comprehensive Model

    Get PDF
    Eye-tracking technology is an integral component of new display devices suchas virtual and augmented reality headsets. Applications of gaze informationrange from new interaction techniques exploiting eye patterns togaze-contingent digital content creation. However, system latency is still asignificant issue in many of these applications because it breaks thesynchronization between the current and measured gaze positions. Consequently,it may lead to unwanted visual artifacts and degradation of user experience. Inthis work, we focus on foveated rendering applications where the quality of animage is reduced towards the periphery for computational savings. In foveatedrendering, the presence of latency leads to delayed updates to the renderedframe, making the quality degradation visible to the user. To address thisissue and to combat system latency, recent work proposes to use saccade landingposition prediction to extrapolate the gaze information from delayedeye-tracking samples. While the benefits of such a strategy have already beendemonstrated, the solutions range from simple and efficient ones, which makeseveral assumptions about the saccadic eye movements, to more complex andcostly ones, which use machine learning techniques. Yet, it is unclear to whatextent the prediction can benefit from accounting for additional factors. Thispaper presents a series of experiments investigating the importance ofdifferent factors for saccades prediction in common virtual and augmentedreality applications. In particular, we investigate the effects of saccadeorientation in 3D space and smooth pursuit eye-motion (SPEM) and how theirinfluence compares to the variability across users. We also present a simpleyet efficient correction method that adapts the existing saccade predictionmethods to handle these factors without performing extensive data collection.<br

    Saccade Landing Point Prediction Based on Fine-Grained Learning Method

    Full text link
    The landing point of a saccade defines the new fixation region, the new region of interest. We asked whether it was possible to predict the saccade landing point early in this very fast eye movement. This work proposes a new algorithm based on LSTM networks and a fine-grained loss function for saccade landing point prediction in real-world scenarios. Predicting the landing point is a critical milestone toward reducing the problems caused by display-update latency in gaze-contingent systems that make real-time changes in the display based on eye tracking. Saccadic eye movements are some of the fastest human neuro-motor activities with angular velocities of up to 1,000°/s. We present a comprehensive analysis of the performance of our method using a database with almost 220,000 saccades from 75 participants captured during natural viewing of videos. We include a comparison with state-of-the-art saccade landing point prediction algorithms. The results obtained using our proposed method outperformed existing approaches with improvements of up to 50% error reduction. Finally, we analyzed some factors that affected prediction errors including duration, length, age, and user intrinsic characteristics.This work was supported in part by the Project BIBECA through MINECO/FEDER under Grant RTI2018-101248-B-100, in part by the Jose Castillejo Program through MINECO under Grant CAS17/00117, and in part by the National Institutes of Health (NIH) under Grant P30EY003790 and Grant R21EY023724

    Accelerated Foveated Rendering based on Adaptive Tessellation

    Get PDF
    We propose an optimization method for adaptive geometric tessellation, involving the saccadic motion of the human eye and foveated rendering. Increased demands on computational resources, especially in the field of head-mounted devices with gaze contingency make optimization schemes pertinent for a seamless user experience. For implementing foveated rendering, our algorithm tessellates a 3D model in real-time based on the location of the user's gaze, substituted with a mouse cursor in this project as a proof of concept. Saccades and fixations of the human eye are simulated by delaying the process of tessellation and rendering by the minimum time taken to complete a saccade. Calculations required for tessellation and rendering the changes on the screen are stalled as and when the eye fixates after a saccade. The paper walks through our contribution by describing the theory, the application method, and results from our user study evaluating our method.<br/

    Perceptual Manipulations for Hiding Image Transformations in Virtual Reality

    Get PDF
    Users of a virtual reality make frequent gaze shifts and head movements to explore their surrounding environment. Saccades are rapid, ballistic, conjugate eye movements that reposition our gaze, and in doing so create large-field motion on our retina. Due to the high speed motion on the retina during saccades, the brain suppresses the visual signals from the eye, a perceptual phenomenon known as the saccadic suppression. These moments of visual blindness can help hide the display graphical updates in a virtual reality. In this dissertation, I investigated how the visibility of various image transformations differed, during combinations of saccade and head rotation conditions. Additionally, I studied how hand and gaze interaction, affected image change discrimination in an inattentional blindness task. I conducted four psychophysical experiments in desktop or head-mounted VR. In the eye tracking studies, users viewed 3D scenes, and were triggered to make a vertical or horizontal saccade. During the saccade an instantaneous translation or rotation was applied to the virtual camera used to render the scene. Participants were required to indicate the direction of these transitions after each trial. The results showed that type and size of the image transformation affected change detectability. During horizontal or vertical saccades, rotations along the roll axis were the most detectable, while horizontal and vertical translations were least noticed. In a second similar study, I added a constant camera motion to simulate a head rotation, and in a third study, I compared active head rotation with a simulated rotation or a static head. I found less sensitivity to transsaccadic horizontal compared to vertical camera shifts during simulated or real head pan. Conversely, during simulated or real head tilt observers were less sensitive to transsaccadic vertical than horizontal camera shifts. In addition, in my multi-interactive inattentional blindness experiment, I compared sensitivity to sudden image transformations when a participant used their hand and gaze to move and watch an object, to when they only watched it move. The results confirmed that when involved in a primary task that requires focus and attention with two interaction modalities (gaze and hand), a visual stimuli can better be hidden than when only one sense (vision) is involved. Understanding the effect of continuous head movement and attention on the visibility of a sudden transsaccadic change can help optimize the visual performance of gaze-contingent displays and improve user experience. Perceptually suppressed rotations or translations can be used to introduce imperceptible changes in virtual camera pose in applications such as networked gaming, collaborative virtual reality and redirected walking. This dissertation suggests that such transformations can be more effective and more substantial during active or passive head motion. Moreover, inattentional blindness during an attention-demanding task provides additional opportunities for imperceptible updates to a visual display

    Perceptual Manipulations for Hiding Image Transformations in Virtual Reality

    Get PDF
    Users of a virtual reality make frequent gaze shifts and head movements to explore their surrounding environment. Saccades are rapid, ballistic, conjugate eye movements that reposition our gaze, and in doing so create large-field motion on our retina. Due to the high speed motion on the retina during saccades, the brain suppresses the visual signals from the eye, a perceptual phenomenon known as the saccadic suppression. These moments of visual blindness can help hide the display graphical updates in a virtual reality. In this dissertation, I investigated how the visibility of various image transformations differed, during combinations of saccade and head rotation conditions. Additionally, I studied how hand and gaze interaction, affected image change discrimination in an inattentional blindness task. I conducted four psychophysical experiments in desktop or head-mounted VR. In the eye tracking studies, users viewed 3D scenes, and were triggered to make a vertical or horizontal saccade. During the saccade an instantaneous translation or rotation was applied to the virtual camera used to render the scene. Participants were required to indicate the direction of these transitions after each trial. The results showed that type and size of the image transformation affected change detectability. During horizontal or vertical saccades, rotations along the roll axis were the most detectable, while horizontal and vertical translations were least noticed. In a second similar study, I added a constant camera motion to simulate a head rotation, and in a third study, I compared active head rotation with a simulated rotation or a static head. I found less sensitivity to transsaccadic horizontal compared to vertical camera shifts during simulated or real head pan. Conversely, during simulated or real head tilt observers were less sensitive to transsaccadic vertical than horizontal camera shifts. In addition, in my multi-interactive inattentional blindness experiment, I compared sensitivity to sudden image transformations when a participant used their hand and gaze to move and watch an object, to when they only watched it move. The results confirmed that when involved in a primary task that requires focus and attention with two interaction modalities (gaze and hand), a visual stimuli can better be hidden than when only one sense (vision) is involved. Understanding the effect of continuous head movement and attention on the visibility of a sudden transsaccadic change can help optimize the visual performance of gaze-contingent displays and improve user experience. Perceptually suppressed rotations or translations can be used to introduce imperceptible changes in virtual camera pose in applications such as networked gaming, collaborative virtual reality and redirected walking. This dissertation suggests that such transformations can be more effective and more substantial during active or passive head motion. Moreover, inattentional blindness during an attention-demanding task provides additional opportunities for imperceptible updates to a visual display

    GazeStereo3D: seamless disparity manipulations

    Get PDF
    Producing a high quality stereoscopic impression on current displays is a challenging task. The content has to be carefully prepared in order to maintain visual comfort, which typically affects the quality of depth reproduction. In this work, we show that this problem can be significantly alleviated when the eye fixation regions can be roughly estimated. We propose a new method for stereoscopic depth adjustment that utilizes eye tracking or other gaze prediction information. The key idea that distinguishes our approach from the previous work is to apply gradual depth adjustments at the eye fixation stage, so that they remain unnoticeable. To this end, we measure the limits imposed on the speed of disparity changes in various depth adjustment scenarios, and formulate a new model that can guide such seamless stereoscopic content processing. Based on this model, we propose a real-time controller that applies local manipulations to stereoscopic content to find the optimum between depth reproduction and visual comfort. We show that the controller is mostly immune to the limitations of low-cost eye tracking solutions. We also demonstrate benefits of our model in off-line applications, such as stereoscopic movie production, where skillful directors can reliably guide and predict viewers' attention or where attended image regions are identified during eye tracking sessions. We validate both our model and the controller in a series of user experiments. They show significant improvements in depth perception without sacrificing the visual quality when our techniques are applied

    A new type of eye movement model based on recurrent neural networks for simulating the gaze behavior of human reading.

    Get PDF
    Traditional eye movement models are based on psychological assumptions and empirical data that are not able to simulate eye movement on previously unseen text data. To address this problem, a new type of eye movement model is presented and tested in this paper. In contrast to conventional psychology-based eye movement models, ours is based on a recurrent neural network (RNN) to generate a gaze point prediction sequence, by using the combination of convolutional neural networks (CNN), bidirectional long short-term memory networks (LSTM), and conditional random fields (CRF). The model uses the eye movement data of a reader reading some texts as training data to predict the eye movements of the same reader reading a previously unseen text. A theoretical analysis of the model is presented to show its excellent convergence performance. Experimental results are then presented to demonstrate that the proposed model can achieve similar prediction accuracy while requiring fewer features than current machine learning models
    corecore