54 research outputs found

    Torque Ripple Reduction in DTC Induction Motor Drive

    Get PDF
    The asynchronous or Induction Motor (IM) is one of the most widely used electrical machines in the world, due to the three following advantages namely 1.Their construction is simple and rugged 2.The absence of slip rings, commutators and brushes make it cheaper, and 3.It is also maintenance free compared to DC motors and Synchronous motor due to wear and tear of brushes, slip rings and commutators respectively. The Section 1 deals with the introduction of induction motor and Direct Torque Control scheme. Section 2 briefly discusses the types of Induction motor. Section 3 tells about the control strategies of Induction motor respectively scalar control and vector control, and also briefly explains about Direct Torque Control (DTC) method. The Section 4 discuss about the Types of Control Strategies for Torque ripple Reductions in DTC as well as the two proposed schemes namely 1.Fuzzy Logic Controller (FLC) for DTC-SVM and 2.Artificial Neural Network (ANN) controller for DTC-SVM respectively for IM and its results, The two proposed schemes uses Hybrid Asymmetric Space Vector Pulse Width Modulation (HASVPWM) for switching the inverter. The Section 5 revels about the modern advanced techniques such as ANN and FLC based DTC

    Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Generator Systems

    Get PDF
    Wind energy plays an increasingly important role in the world because it is friendly to the environment. During the last decades, the concept of a variable-speed wind turbine (WT) has been receiving increasing attention due to the fact that it is more controllable and efficient, and has good power quality. As the demand of controllability of variable speed WTs increases, it is therefore important and necessary to investigate the modeling for wind turbine-generator systems (WTGS) that are capable of accurately simulating the behavior of each component in the WTGS. Therefore, this thesis will provide detailed models of a grid-connected wind turbine system equipped with a doubly-fed induction generator (DFIG), which includes the aerodynamic models of the wind turbine, the models of the mechanical transmission system, the DFIG models and the three-phase two-level PWM voltage source converter models. In order to obtain satisfying output power from the WTGS, control strategies are also necessary to be developed based on the previously obtained WTGS models. These control schemes include the grid-side converter control, the generator-side converter control, the maximum power point tracking control and the pitch angle control. The grid-side converter controller is used to keep the DC-link voltage constant and yield a unity power factor looking into the WTGS from the grid-side. The generator-side converter controller has the ability of regulating the torque, active power and reactive power. The maximum power point tracking control is used to provide the reference values for the active power at the stator terminals. The pitch angle control scheme is used to regulate the pitch angle and thus keep the output power at rated value even when the wind speed experiences gusts. Various studies in the literature have reported that two-level converters have several disadvantages compared with three-level converters. Among the disadvantages are high switching losses, high dv/dt, and high total harmonic distortion (THD). Hence, the models and field oriented control schemes for three-level neutral-point-clamped (NPC) converters are also investigated and applied to a WTGS. Besides, an advanced modulation technology, namely, space vector PWM (SVPWM), is also investigated and compared to traditional sinusoidal PWM in a WTGS

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Advances in dual-three-phase permanent magnet synchronous machines and control techniques

    Get PDF
    Multiphase electrical machines are advantageous for many industrial applications that require a high power rating, smooth torque, power/torque sharing capability, and fault-tolerant capability, compared with conventional single three-phase electrical machines. Consequently, a significant number of studies of multiphase machines has been published in recent years. This paper presents an overview of the recent advances in multiphase permanent magnet synchronous machines (PMSMs) and drive control techniques, with a focus on dual-three-phase PMSMs. It includes an extensive overview of the machine topologies, as well as their modelling methods, pulse-width-modulation techniques, field-oriented control, direct torque control, model predictive control, sensorless control, and fault-tolerant control, together with the newest control strategies for suppressing current harmonics and torque ripples, as well as carrier phase shift techniques, all with worked examples

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Model predictive control of a doubly fed induction generator.

    Get PDF
    Masters Degree. University of KwaZulu- Natal, Durban.The world is currently is energy despair. For years, the world has relied on fossil fuels as the main energy source to produce electricity. At the start, this worked well as there was an abundance. However, due to the increase in population, urbanisation and the birth of many industries, this fuel source has been put under strain. Furthermore, the harmful emissions from the use of fossil fuels has been a great contributor to the destruction of our precious ozone layer. This in turn has gradually increased the harmful effects of global warming on Earth. The need for clean, reliable sources of energy has increased over time, and in a few years, it is expected to be the only source of energy utilized in the production of electrical energy. The research undertaken in this project involves the control of the doubly fed induction generator, which is used in wind energy conversion systems. Commonly termed DFIG, this generator has gained worldwide popularity and is used in majority of wind energy conversion systems. It provides direct grid connection and uses only a partially rated converter. However, the conventional control methods used in the control of the DFIG are either difficult to implement or inefficient. Some require complex tuning of proportional-integral controllers while some produce distorted results. The aim of this research was to investigate and evaluate the application of model predictive control to the control of the DFIG. There exist various different control strategies for the control of the DFIG. This research involved implementing all of the different control strategies via conventional methods and then via the use of model predictive control. Despite there being various methods to implement model predictive control, due to its simplicity and strong suitability, finite control set model predictive control was used in this research. Each of the control strategies implemented both conventionally and via model predictive control were thoroughly analysed in terms of the steady state response, dynamic response and quality of stator current. A comparison between the corresponding control methods is also presented

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito
    corecore