236 research outputs found

    Improving acoustic vehicle classification by information fusion

    No full text
    We present an information fusion approach for ground vehicle classification based on the emitted acoustic signal. Many acoustic factors can contribute to the classification accuracy of working ground vehicles. Classification relying on a single feature set may lose some useful information if its underlying sound production model is not comprehensive. To improve classification accuracy, we consider an information fusion diagram, in which various aspects of an acoustic signature are taken into account and emphasized separately by two different feature extraction methods. The first set of features aims to represent internal sound production, and a number of harmonic components are extracted to characterize the factors related to the vehicle’s resonance. The second set of features is extracted based on a computationally effective discriminatory analysis, and a group of key frequency components are selected by mutual information, accounting for the sound production from the vehicle’s exterior parts. In correspondence with this structure, we further put forward a modifiedBayesian fusion algorithm, which takes advantage of matching each specific feature set with its favored classifier. To assess the proposed approach, experiments are carried out based on a data set containing acoustic signals from different types of vehicles. Results indicate that the fusion approach can effectively increase classification accuracy compared to that achieved using each individual features set alone. The Bayesian-based decision level fusion is found fusion is found to be improved than a feature level fusion approac

    Adaptive and intelligent navigation of autonomous planetary rovers - A survey

    Get PDF
    The application of robotics and autonomous systems in space has increased dramatically. The ongoing Mars rover mission involving the Curiosity rover, along with the success of its predecessors, is a key milestone that showcases the existing capabilities of robotic technology. Nevertheless, there has still been a heavy reliance on human tele-operators to drive these systems. Reducing the reliance on human experts for navigational tasks on Mars remains a major challenge due to the harsh and complex nature of the Martian terrains. The development of a truly autonomous rover system with the capability to be effectively navigated in such environments requires intelligent and adaptive methods fitting for a system with limited resources. This paper surveys a representative selection of work applicable to autonomous planetary rover navigation, discussing some ongoing challenges and promising future research directions from the perspectives of the authors

    Support Vector Machine based Image Classification for Deaf and Mute People

    Full text link
    A hand gesture recognition system provides a natural, innovative and modern way of nonverbal communication. It has a wide area of application in human computer interaction and sign language. The whole system consists of three components: hand detection, gesture recognition and human-computer interaction (HCI) based on recognition; in the existing technique, ANFIS(adaptive neuro-fuzzy interface system) to recognize gestures and makes it attainable to identify relatively complex gestures were used. But the complexity is high and performance is low. To achieve high accuracy and high performance with less complexity, a gray illumination technique is introduced in the proposed Hand gesture recognition. Here, live video is converted into frames and resize the frame, then apply gray illumination algorithm for color balancing in order to separate the skin separately. Then morphological feature extraction operation is carried out. After that support vector machine (SVM) train and testing process are carried out for gesture recognition. Finally, the character sound is played as audio output

    Road terrain type classification based on laser measurement system data

    Full text link
    For road vehicles, knowledge of terrain types is useful in improving passenger safety and comfort. The conventional methods are susceptible to vehicle speed variations and in this paper we present a method of using Laser Measurement System (LMS) data for speed independent road type classification. Experiments were carried out with an instrumented road vehicle (CRUISE), by manually driving on a variety of road terrain types namely Asphalt, Concrete, Grass, and Gravel roads at different speeds. A looking down LMS is used for capturing the terrain data. The range data is capable of capturing the structural differences while the remission values are used to observe anomalies in surface reflectance properties. Both measurements are combined and used in a Support Vector Machines Classifier to achieve an average accuracy of 95% on different road types

    Online Outdoor Terrain Classification Algorithm for Wheeled Mobile Robots Equipped with Inertial and Magnetic Sensors

    Get PDF
    Terrain classification provides valuable information for both control and navigation algorithms of wheeled mobile robots. In this paper, a novel online outdoor terrain classification algorithm is proposed for wheeled mobile robots. The algorithm is based on only time-domain features with both low computational and low memory requirements, which are extracted from the inertial and magnetic sensor signals. Multilayer perceptron (MLP) neural networks are applied as classifiers. The algorithm is tested on a measurement database collected using a prototype measurement system for various outdoor terrain types. Different datasets were constructed based on various setups of processing window sizes, used sensor types, and robot speeds. To examine the possibilities of the three applied sensor types in the application, the features extracted from the measurement data of the different sensors were tested alone, in pairs and fused together. The algorithm is suitable to operate online on the embedded system of the mobile robot. The achieved results show that using the applied time-domain feature set the highest classification efficiencies on unknown data can be above 98%. It is also shown that the gyroscope provides higher classification rates than the widely used accelerometer. The magnetic sensor alone cannot be effectively used but fusing the data of this sensor with the data of the inertial sensors can improve the performance

    A Near-to-Far Learning Framework for Terrain Characterization Using an Aerial/Ground-Vehicle Team

    Get PDF
    In this thesis, a novel framework for adaptive terrain characterization of untraversed far terrain in a natural outdoor setting is presented. The system learns the association between visual appearance of different terrain and the proprioceptive characteristics of that terrain in a self-supervised framework. The proprioceptive characteristics of the terrain are acquired by inertial sensors recording measurements of one second traversals that are mapped into the frequency domain and later through a clustering technique classified into discrete proprioceptive classes. Later, these labels are used as training inputs to the adaptive visual classifier. The visual classifier uses images captured by an aerial vehicle scouting ahead of the ground vehicle and extracts local and global descriptors from image patches. An incremental SVM is utilized on the set of images and training sets as they are grabbed sequentially. The framework proposed in this thesis has been experimentally validated in an outdoor environment. We compare the results of the adaptive approach with the offline a priori classification approach and yield an average 12% increase in accuracy results on outdoor settings. The adaptive classifier gradually learns the association between characteristics and visual features of new terrain interactions and modifies the decision boundaries

    Development of track-driven agriculture robot with terrain classification functionality / Khairul Azmi Mahadhir

    Get PDF
    Over the past years, many robots have been devised to facilitate agricultural activities (that are labor-intensive in nature) so that they can carry out tasks such as crop care or selective harvesting with minimum human supervision. It is commonly observed that rapid change in terrain conditions can jeopardize the performance and efficiency of a robot when performing agricultural activity. For instance, a terrain covered with gravel produces high vibration to robot when traversing on the surface. In this work, an agricultural robot is embedded with machine learning algorithm based on Support Vector Machine (SVM). The aim is to evaluate the effectiveness of the Support Vector Machine in recognizing different terrain conditions in an agriculture field. A test bed equipped with a tracked-driven robot and three types o f terrain i.e. sand, gravel and vegetation has been developed. A small and low power MEMS accelerometer is integrated into the robot for measuring the vertical acceleration. In this experiment, the vibration signals resulted from the interaction between the robot and the different type of terrain were collected. An extensive experimental study was conducted to evaluate the effectiveness of SVM. The results in terms of accuracy of two machine learning techniques based on terrain classification are analyzed and compared. The results show that the robot that is equipped with an SVM can recognize different terrain conditions effectively. Such capability enables the robot to traverse across changing terrain conditions without being trapped in the field. Hence, this research work contributes to develop a self-adaptive agricultural robot in coping with different terrain conditions with minimum human supervision
    corecore