126 research outputs found

    Physiological-based Driver Monitoring Systems: A Scoping Review

    Get PDF
    A physiological-based driver monitoring system (DMS) has attracted research interest and has great potential for providing more accurate and reliable monitoring of the driver’s state during a driving experience. Many driving monitoring systems are driver behavior-based or vehicle-based. When these non-physiological based DMS are coupled with physiological-based data analysis from electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and electromyography (EMG), the physical and emotional state of the driver may also be assessed. Drivers’ wellness can also be monitored, and hence, traffic collisions can be avoided. This paper highlights work that has been published in the past five years related to physiological-based DMS. Specifically, we focused on the physiological indicators applied in DMS design and development. Work utilizing key physiological indicators related to driver identification, driver alertness, driver drowsiness, driver fatigue, and drunk driver is identified and described based on the PRISMA Extension for Scoping Reviews (PRISMA-Sc) Framework. The relationship between selected papers is visualized using keyword co-occurrence. Findings were presented using a narrative review approach based on classifications of DMS. Finally, the challenges of physiological-based DMS are highlighted in the conclusion. Doi: 10.28991/CEJ-2022-08-12-020 Full Text: PD

    An Empirical study on Predicting Blood Pressure using Classification and Regression Trees

    Get PDF
    Blood pressure diseases have become one of the major threats to human health. Continuous measurement of bloodpressure has proven to be a prerequisite for effective incident prevention. In contrast with the traditional prediction models with lowmeasurement accuracy or long training time, non-invasive blood pressure measurement is a promising use for continuousmeasurement. Thus in this paper, classification and regression trees (CART) are proposed and applied to tackle the problem. Firstly,according to the characteristics of different information, different CART models are constructed. Secondly, in order to avoid theover-fitting problem of these models, the cross-validation method is used for selecting the optimum parameters so as to achieve thebest generalization of these models. Based on the biological data collected from CM400 monitor, this approach has achieved betterperformance than the common existing models such as linear regression, ridge regression, the support vector machine and neuralnetwork in terms of accuracy rate, root mean square error, deviation rate, Theil IC, and the required training time is also comparativelyless. With increasing data, the accuracy rate of predicting systolic blood pressure and diastolic blood pressure by CART exceeds 90%,and the training time is less than 0.5s

    Efficient Personalized Learning for Wearable Health Applications using HyperDimensional Computing

    Full text link
    Health monitoring applications increasingly rely on machine learning techniques to learn end-user physiological and behavioral patterns in everyday settings. Considering the significant role of wearable devices in monitoring human body parameters, on-device learning can be utilized to build personalized models for behavioral and physiological patterns, and provide data privacy for users at the same time. However, resource constraints on most of these wearable devices prevent the ability to perform online learning on them. To address this issue, it is required to rethink the machine learning models from the algorithmic perspective to be suitable to run on wearable devices. Hyperdimensional computing (HDC) offers a well-suited on-device learning solution for resource-constrained devices and provides support for privacy-preserving personalization. Our HDC-based method offers flexibility, high efficiency, resilience, and performance while enabling on-device personalization and privacy protection. We evaluate the efficacy of our approach using three case studies and show that our system improves the energy efficiency of training by up to 45.8×45.8\times compared with the state-of-the-art Deep Neural Network (DNN) algorithms while offering a comparable accuracy

    Physiological Approach To Characterize Drowsiness In Simulated Flight Operations During Window Of Circadian Low

    Get PDF
    Drowsiness is a psycho-physiological transition from awake towards falling sleep and its detection is crucial in aviation industries. It is a common cause for pilot’s error due to unpredictable work hours, longer flight periods, circadian disruption, and insufficient sleep. The pilots’ are prone towards higher level of drowsiness during window of circadian low (2:00 am- 6:00 am). Airplanes require complex operations and lack of alertness increases accidents. Aviation accidents are much disastrous and early drowsiness detection helps to reduce such accidents. This thesis studied physiological signals during drowsiness from 18 commercially-rated pilots in flight simulator. The major aim of the study was to observe the feasibility of physiological signals to predict drowsiness. In chapter 3, the spectral behavior of electroencephalogram (EEG) was studied via power spectral density and coherence. The delta power reduced and alpha power increased significantly (

    Machine Learning Models for Mental Stress Classification based on Multimodal Biosignal Input

    Get PDF
    Mental stress is a largely prevalent condition directly or indirectly responsible for almost half of all work-related diseases. Work-Related Stress is the second most impactful occupational health problem in Europe, behind musculoskeletal diseases. When mental health is adequately handled, a worker’s well-being, performance, and productivity can be considerably improved. This thesis presents machine learning models to classify mental stress experienced by computer users using physiological signals including heart rate, acquired using a smart- watch; respiration, derived from a smartphone’s acc placed on the chest; and trapezius electromyography, using proprietary electromyography sensors. Two interactive proto- cols were implemented to collect data from 12 individuals. Time and frequency domain features were extracted from the heart rate and electromyography signals, and statistical and temporal features were extracted from the derived respiration signal. Three algorithms: Support Vector Machine, Random Forest, and K-Nearest-Neighbor were employed for mental stress classification. Different input modalities were tested for the machine learning models: one for each physiological signal and a multimodal one, combining all of them. Random Forest obtained the best mean accuracy (98.5%) for the respiration model whereas K-Nearest-Neighbor attained higher mean accuracies for the heart rate (89.0%) left, right and total electromyography (98.9%, 99.2%, and 99.3%) models. KNN algorithm was also able to achieve 100% mean accuracy for the multimodal model. A possible future approach would be to validate these models in real-time.O stress mental é uma condição amplamente prevalente direta ou indiretamente responsável por quase metade de todas doenças relacionadas com trabalho. O stress expe- rienciado no trabalho é o segundo problema de saúde ocupacional com maior impacto na Europa, depois das doenças músculo-esqueléticas. Quando a saúde mental é adequada- mente cuidada, o bem-estar, o desempenho e a produtividade de um trabalhador podem ser consideravelmente melhorados. Esta tese apresenta modelos de aprendizagem automática que classificam o stress mental experienciado por utilizadores de computadores recorrendo a sinais fisiológi- cos, incluindo a frequência cardíaca, adquirida pelo sensor de fotopletismografia de um smartwatch; a respiração, derivada de um acelerómetro incorporado no smartphone po- sicionado no peito; e electromiografia de cada um dos músculos trapézios, utilizando sensores electromiográficos proprietários. Foram implementados dois protocolos inte- ractivos para recolha de dados de 12 indivíduos. Características do domínio temporal e de frequência foram extraídas dos sinais de frequência cardíaca e electromiografia, e características estatísticas e temporais foram extraídas do sinal respiratório. Três algoritmos entitulados K-Nearest-Neighbor, Random Forest, e Support Vector Machine foram utilizados para a classificação do stress mental. Foram testadas diferentes modalidades de dados para os modelos de aprendizagem automática: uma para cada sinal fisiológico e uma multimodal, combinando os três. O Random Forest obteve a melhor precisão média (98,5%) para o modelo de respiração enquanto que o K-Nearest-Neighbor atingiu uma maior precisão média nos modelos de frequência cardíaca (89,0%) e electro- miografia esquerda, direita e total (98,9%, 99,2%, e 99,3%). O algoritmo KNN conseguiu ainda atingir uma precisão média de 100% para o modelo multimodal. Uma possível abordagem futura seria efetuar uma validação destes modelos em tempo real

    Fatigue Detection for Ship OOWs Based on Input Data Features, from The Perspective of Comparison with Vehicle Drivers: A Review

    Get PDF
    Ninety percent of the world’s cargo is transported by sea, and the fatigue of ship officers of the watch (OOWs) contributes significantly to maritime accidents. The fatigue detection of ship OOWs is more difficult than that of vehicles drivers owing to an increase in the automation degree. In this study, research progress pertaining to fatigue detection in OOWs is comprehensively analysed based on a comparison with that in vehicle drivers. Fatigue detection techniques for OOWs are organised based on input sources, which include the physiological/behavioural features of OOWs, vehicle/ship features, and their comprehensive features. Prerequisites for detecting fatigue in OOWs are summarised. Subsequently, various input features applicable and existing applications to the fatigue detection of OOWs are proposed, and their limitations are analysed. The results show that the reliability of the acquired feature data is insufficient for detecting fatigue in OOWs, as well as a non-negligible invasive effect on OOWs. Hence, low-invasive physiological information pertaining to the OOWs, behaviour videos, and multisource feature data of ship characteristics should be used as inputs in future studies to realise quantitative, accurate, and real-time fatigue detections in OOWs on actual ships

    Adversarial Robustness and Feature Impact Analysis for Driver Drowsiness Detection

    Get PDF
    Drowsy driving is a major cause of road accidents, but drivers are dismissive of the impact that fatigue can have on their reaction times. To detect drowsiness before any impairment occurs, a promising strategy is using Machine Learning (ML) to monitor Heart Rate Variability (HRV) signals. This work presents multiple experiments with different HRV time windows and ML models, a feature impact analysis using Shapley Additive Explanations (SHAP), and an adversarial robustness analysis to assess their reliability when processing faulty input data and perturbed HRV signals. The most reliable model was Extreme Gradient Boosting (XGB) and the optimal time window had between 120 and 150 seconds. Furthermore, SHAP enabled the selection of the 18 most impactful features and the training of new smaller models that achieved a performance as good as the initial ones. Despite the susceptibility of all models to adversarial attacks, adversarial training enabled them to preserve significantly higher results, especially XGB. Therefore, ML models can significantly benefit from realistic adversarial training to provide a more robust driver drowsiness detection.Comment: 10 pages, 2 tables, 3 figures, AIME 2023 conferenc

    A model for inebriation recognition in humans using computer vision

    Get PDF
    Abstract: Inebriation is a situational impairment caused by the consumption of alcohol affecting the consumer's interaction with the environment around them...M.Sc. (Information Technology

    Review of Ethanol Intoxication Sensing Technologies and Techniques

    Get PDF
    The field of alcohol intoxication sensing is over 100 years old, spanning the fields of medicine, chemistry, and computer science, aiming to produce the most effective and accurate methods of quantifying intoxication levels. This review presents the development and the current state of alcohol intoxication quantifying devices and techniques, separated into six major categories: estimates, breath alcohol devices, bodily fluid testing, transdermal sensors, mathematical algorithms, and optical techniques. Each of these categories was researched by analyzing their respective performances and drawbacks. We found that the major developments in monitoring ethanol intoxication levels aim at noninvasive transdermal/optical methods for personal monitoring. Many of the “categories” of ethanol intoxication systems overlap with each other with to a varying extent, hence the division of categories is based only on the principal operation of the techniques described in this review. In summary, the gold-standard method for measuring blood ethanol levels is through gas chromatography. Early estimation methods based on mathematical equations are largely popular in forensic fields. Breath alcohol devices are the most common type of alcohol sensors on the market and are generally implemented in law enforcement. Transdermal sensors vary largely in their sensing methodologies, but they mostly follow the principle of electrical sensing or enzymatic reaction rate. Optical devices and methodologies perform well, with some cases outperforming breath alcohol devices in terms of the precision of measurement. Other estimation algorithms consider multimodal approaches and should not be considered alcohol sensing devices, but rather as prospective measurement of the intoxication influence. This review found 38 unique technologies and techniques for measuring alcohol intoxication, which is testament to the acute interest in the innovation of noninvasive technologies for assessing intoxication
    corecore