481 research outputs found

    Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches

    Get PDF
    Accurate inventories of grasslands are important for studies of carbon dynamics, biodiversity conservation and agricultural management. For regions with persistent cloud cover the use of multi-temporal synthetic aperture radar (SAR) data provides an attractive solution for generating up-to-date inventories of grasslands. This is even more appealing considering the data that will be available from upcoming missions such as Sentinel-1 and ALOS-2. In this study, the performance of three machine learning algorithms; Random Forests (RF), Support Vector Machines (SVM) and the relatively underused Extremely Randomised Trees (ERT) is evaluated for discriminating between grassland types over two large heterogeneous areas of Ireland using multi-temporal, multi-sensor radar and ancillary spatial datasets. A detailed accuracy assessment shows the efficacy of the three algorithms to classify different types of grasslands. Overall accuracies ≥ 88.7% (with kappa coefficient of 0.87) were achieved for the single frequency classifications and maximum accuracies of 97.9% (kappa coefficient of 0.98) for the combined frequency classifications. For most datasets, the ERT classifier outperforms SVM and RF

    A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)

    Get PDF
    The aim of this study is to extract impervious surfaces and show their spatial distribution, using different machine learning algorithms. For this purpose, geoprocessing and remote sensing techniques were used and three classification methods for digital images were compared, namely Support Vector Machines (SVM), Maximum Likelihood (ML) and Random Trees (RT) classifiers. The study area is one of the most prestigious and the largest housing estates in Warsaw (Poland), the Fort Bema housing complex, which is also an exemplary model for hydrological solutions. The study was prepared on the Geographic Information System platform (GIS) using aerial optical images, orthorectified and thus provided with a suitable coordinate system. The use of these data is therefore supported by the accuracy of the resulting infrared channel product with a pixel size of 0.25 m, making the results much more accurate compared to satellite imagery. The results of the SVM, ML and RT classifiers were compared using the confusion matrix, accuracy (Root Mean Square Error /RMSE/) and kappa index. This showed that the three algorithms were able to successfully discriminate between targets. Overall, the three classifiers had errors, but specifically for impervious surfaces, the highest accuracy was achieved with the SVM classifier (the highest percentage of overall accuracy), followed by ML and RT with 91.51%, 91.35% and 84.52% of the results, respectively. A comparison of the visual results and the confusion matrix shows that although visually the RT method appears to be the most detailed classification into pervious and impervious surfaces, the results were not always correct, e.g., water/shadow was detected as an impervious surface. The NDVI index was also mapped for the same spatial study area and its application in the evaluation of pervious surfaces was explained. The results obtained with the GIS platform, presented in this paper, provide a better understanding of how these advanced classifiers work, which in turn can provide insightful guidance for their selection and combination in real-world applications. The paper also provides an overview of the main works/studies dealing with impervious surface mapping, with different methods for their assessment (including the use of conventional remote sensing, NDVI, multisensory and cross-source data, ‘social sensing’ and classification methods such as SVM, ML and RT), as well as an overview of the research results

    Object-Based Supervised Machine Learning Regional-Scale Land-Cover Classification Using High Resolution Remotely Sensed Data

    Get PDF
    High spatial resolution (HR) (1m – 5m) remotely sensed data in conjunction with supervised machine learning classification are commonly used to construct land-cover classifications. Despite the increasing availability of HR data, most studies investigating HR remotely sensed data and associated classification methods employ relatively small study areas. This work therefore drew on a 2,609 km2, regional-scale study in northeastern West Virginia, USA, to investigates a number of core aspects of HR land-cover supervised classification using machine learning. Issues explored include training sample selection, cross-validation parameter tuning, the choice of machine learning algorithm, training sample set size, and feature selection. A geographic object-based image analysis (GEOBIA) approach was used. The data comprised National Agricultural Imagery Program (NAIP) orthoimagery and LIDAR-derived rasters. Stratified-statistical-based training sampling methods were found to generate higher classification accuracies than deliberative-based sampling. Subset-based sampling, in which training data is collected from a small geographic subset area within the study site, did not notably decrease the classification accuracy. For the five machine learning algorithms investigated, support vector machines (SVM), random forests (RF), k-nearest neighbors (k-NN), single-layer perceptron neural networks (NEU), and learning vector quantization (LVQ), increasing the size of the training set typically improved the overall accuracy of the classification. However, RF was consistently more accurate than the other four machine learning algorithms, even when trained from a relatively small training sample set. Recursive feature elimination (RFE), which can be used to reduce the dimensionality of a training set, was found to increase the overall accuracy of both SVM and NEU classification, however the improvement in overall accuracy diminished as sample size increased. RFE resulted in only a small improvement the overall accuracy of RF classification, indicating that RF is generally insensitive to the Hughes Phenomenon. Nevertheless, as feature selection is an optional step in the classification process, and can be discarded if it has a negative effect on classification accuracy, it should be investigated as part of best practice for supervised machine land-cover classification using remotely sensed data

    An Accurate Vegetation and Non-Vegetation Differentiation Approach Based on Land Cover Classification

    Get PDF
    Accurate vegetation detection is important for many applications, such as crop yield estimation, landcover land use monitoring, urban growth monitoring, drought monitoring, etc. Popular conventional approaches to vegetation detection incorporate the normalized difference vegetation index (NDVI), which uses the red and near infrared (NIR) bands, and enhanced vegetation index (EVI), which uses red, NIR, and the blue bands. Although NDVI and EVI are efficient, their accuracies still have room for further improvement. In this paper, we propose a new approach to vegetation detection based on land cover classification. That is, we first perform an accurate classification of 15 or more land cover types. The land covers such as grass, shrub, and trees are then grouped into vegetation and other land cover types such as roads, buildings, etc. are grouped into non-vegetation. Similar to NDVI and EVI, only RGB and NIR bands are needed in our proposed approach. If Laser imaging, Detection, and Ranging (LiDAR) data are available, our approach can also incorporate LiDAR in the detection process. Results using a well-known dataset demonstrated that the proposed approach is feasible and achieves more accurate vegetation detection than both NDVI and EVI. In particular, a Support Vector Machine (SVM) approach performed 6% better than NDVI and 50% better than EVI in terms of overall accuracy (OA)

    The use of WorldView-2 satellite data in urban tree species mapping by object-based image analysis technique

    Get PDF
    The growth of residential and commercial areas threatens vegetation and ecosystems. Thus, an urgent urban management issue involves determining the state and the quantity of urban tree species to protect the environment, as well as controlling their growth and decline. This study focused on the detection of urban tree species by considering three types of tree species, namely, Mesua ferrea L., Samanea saman, and Casuarina sumatrana. New rule sets were developed to detect these three species. In this regard, two pixel-based classification methods were applied and compared; namely, the method of maximum likelihood classification and support vector machines. These methods were then compared with object-based image analysis (OBIA) classification. OBIA was used to develop rule sets by extracting spatial, spectral, textural and color attributes, among others. Finally, the new rule sets were implemented into WorldView-2 imagery. The results indicated that the OBIA based on the rule sets displayed a significant potential to detect different tree species with high accuracy

    Oil Palm Mapping Over Peninsular Malaysia Using Google Earth Engine and Machine Learning Algorithms

    Get PDF
    Oil palm plays a pivotal role in the ecosystem, environment, economy and without proper monitoring, uncontrolled oil palm activities could contribute to deforestation that can cause high negative impacts on the environment and therefore, proper management and monitoring of the oil palm industry are necessary. Mapping the distribution of oil palm is crucial in order to manage and plan the sustainable operations of oil palm plantations. Remote sensing provides a means to detect and map oil palm from space effectively. Recent advances in cloud computing and big data allow rapid mapping to be performed over large a geographical scale. In this study, 30 m Landsat 8 data were processed using a cloud computing platform of Google Earth Engine (GEE) in order to classify oil palm land cover using non-parametric machine learning algorithms such as Support Vector Machine (SVM), Classification and Regression Tree (CART) and Random Forest (RF) for the first time over Peninsular Malaysia. The hyperparameters were tuned, and the overall accuracy produced by the SVM, CART and RF were 93.16%, 80.08% and 86.50% respectively. Overall, the SVM classified the 7 classes (water, built-up, bare soil, forest, oil palm, other vegetation and paddy) the best. However, RF extracted oil palm information better than the SVM. The algorithms were compared and the McNemar's test showed significant values for comparisons between SVM and CART and RF and CART. On the other hand, the performance of SVM and RF are considered equally effective. Despite the challenges in implementing machine learning optimisation using GEE over a large area, this paper shows the efficiency of GEE as a cloud-based free platform to perform bioresource distributions mapping such as oil palm over a large area in Peninsular Malaysia

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF
    corecore